IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.08530.html
   My bibliography  Save this paper

Portfolio Optimization Rules beyond the Mean-Variance Approach

Author

Listed:
  • Maxime Markov
  • Vladimir Markov

Abstract

In this paper, we revisit the relationship between investors' utility functions and portfolio allocation rules. We derive portfolio allocation rules for asymmetric Laplace distributed $ALD(\mu,\sigma,\kappa)$ returns and compare them with the mean-variance approach, which is based on Gaussian returns. We reveal that in the limit of small $\frac{\mu}{\sigma}$, the Markowitz contribution is accompanied by a skewness term. We also obtain the allocation rules when the expected return is a random normal variable in an average and worst-case scenarios, which allows us to take into account uncertainty of the predicted returns. An optimal worst-case scenario solution smoothly approximates between equal weights and minimum variance portfolio, presenting an attractive convex alternative to the risk parity portfolio. We address the issue of handling singular covariance matrices by imposing conditional independence structure on the precision matrix directly. Finally, utilizing a microscopic portfolio model with random drift and analytical expression for the expected utility function with log-normal distributed cross-sectional returns, we demonstrate the influence of model parameters on portfolio construction. This comprehensive approach enhances allocation weight stability, mitigates instabilities associated with the mean-variance approach, and can prove valuable for both short-term traders and long-term investors.

Suggested Citation

  • Maxime Markov & Vladimir Markov, 2023. "Portfolio Optimization Rules beyond the Mean-Variance Approach," Papers 2305.08530, arXiv.org, revised Nov 2023.
  • Handle: RePEc:arx:papers:2305.08530
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.08530
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Touloumis, Anestis, 2015. "Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 251-261.
    3. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    4. John H. Cochrane, 2021. "Portfolios for Long-Term Investors," NBER Working Papers 28513, National Bureau of Economic Research, Inc.
    5. repec:dau:papers:123456789/4688 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Cotton, 2024. "Schur Complementary Allocation: A Unification of Hierarchical Risk Parity and Minimum Variance Portfolios," Papers 2411.05807, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yujia Hu, 2023. "A Heuristic Approach to Forecasting and Selection of a Portfolio with Extra High Dimensions," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    2. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    3. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    4. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    5. László PáL, 2022. "Asset Allocation Strategies Using Covariance Matrix Estimators," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 10(1), pages 133-144, September.
    6. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    7. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    8. Benoît Carmichael & Gilles Boevi Koumou & Kevin Moran, 2023. "Unifying Portfolio Diversification Measures Using Rao’s Quadratic Entropy," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(4), pages 769-802, December.
    9. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    10. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    11. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
    12. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    13. Burkhardt, Raphael & Ulrych, Urban, 2023. "Sparse and stable international portfolio optimization and currency risk management," Journal of International Money and Finance, Elsevier, vol. 139(C).
    14. Fuertes, Ana-Maria & Zhao, Nan, 2023. "A Bayesian perspective on commodity style integration," Journal of Commodity Markets, Elsevier, vol. 30(C).
    15. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    16. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    17. Kourtis, Apostolos, 2014. "On the distribution and estimation of trading costs," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 104-117.
    18. Maller, Ross & Roberts, Steven & Tourky, Rabee, 2016. "The large-sample distribution of the maximum Sharpe ratio with and without short sales," Journal of Econometrics, Elsevier, vol. 194(1), pages 138-152.
    19. Hongseon Kim & Soonbong Lee & Seung Bum Soh & Seongmoon Kim, 2022. "Improving portfolio investment performance with distance‐based portfolio‐combining algorithms," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(4), pages 941-959, December.
    20. Xing, Xin & Hu, Jinjin & Yang, Yaning, 2014. "Robust minimum variance portfolio with L-infinity constraints," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 107-117.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.08530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.