TM-vector: A Novel Forecasting Approach for Market stock movement with a Rich Representation of Twitter and Market data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Song, Yu & Akagi, Fumio, 2016. "Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock marketAuthor-Name: Qiu, Mingyue," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 1-7.
- Dev Shah & Haruna Isah & Farhana Zulkernine, 2019. "Stock Market Analysis: A Review and Taxonomy of Prediction Techniques," IJFS, MDPI, vol. 7(2), pages 1-22, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
- Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
- Arjun Prakash & Nick James & Max Menzies & Gilad Francis, 2020. "Structural clustering of volatility regimes for dynamic trading strategies," Papers 2004.09963, arXiv.org, revised Nov 2021.
- Francis Magloire Peujio Fozap, 2025. "Hybrid Machine Learning Models for Long-Term Stock Market Forecasting: Integrating Technical Indicators," JRFM, MDPI, vol. 18(4), pages 1-21, April.
- Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
- Erdinc Akyildirim & Aurelio F. Bariviera & Duc Khuong Nguyen & Ahmet Sensoy, 2022. "Forecasting high-frequency stock returns: a comparison of alternative methods," Annals of Operations Research, Springer, vol. 313(2), pages 639-690, June.
- L.J. Basson & Sune Ferreira-Schenk & Zandri Dickason-Koekemoer, 2022. "Fractal Dimension Option Hedging Strategy Implementation During Turbulent Market Conditions in Developing and Developed Countries," International Journal of Economics and Financial Issues, Econjournals, vol. 12(2), pages 84-95, March.
- Veronika Staňková, 2021. "Can Machine Learning Be Useful in Corporate Finance and Business Valuation? Overview of Current Research [Může být strojové učení užitečné ve financích podniku a jeho ocenění? Přehled současného vý," Oceňování, Prague University of Economics and Business, vol. 14(4), pages 53-66.
- Manel Hamdi & Walid Chkili, 2019. "An artificial neural network augmented GARCH model for Islamic stock market volatility: Do asymmetry and long memory matter?," Working Papers 13, Economic Research Forum, revised 21 Aug 2019.
- Azaz Hassan Khan & Abdullah Shah & Abbas Ali & Rabia Shahid & Zaka Ullah Zahid & Malik Umar Sharif & Tariqullah Jan & Mohammad Haseeb Zafar, 2023. "A performance comparison of machine learning models for stock market prediction with novel investment strategy," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-19, September.
- H. T. Shehzad & M. A. Anwar & M. Razzaq, 2023. "A Comparative Predicting Stock Prices using Heston and Geometric Brownian Motion Models," Papers 2302.07796, arXiv.org.
- Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
- Dania AL-Najjar, 2022. "Impact of the twin pandemics: COVID-19 and oil crash on Saudi exchange index," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-24, May.
- Hakan Pabuccu & Adrian Barbu, 2024. "Feature selection with annealing for forecasting financial time series," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
- Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
- Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.
- Zhang, Peng & Li, Zeyun & Ghardallou, Wafa & Xin, Yan & Cao, Jie, 2023. "Nexus of institutional quality and technological innovation on renewable energy development: Moderating role of green finance," Renewable Energy, Elsevier, vol. 214(C), pages 233-241.
- Mahsa Ghorbani & Edwin K. P. Chong, 2022. "A dimension reduction method for stock-price prediction using multiple predictors," Operational Research, Springer, vol. 22(3), pages 2859-2878, July.
- Gourav Kumar & Uday Pratap Singh & Sanjeev Jain, 2022. "Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 991-1039, October.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-05-29 (Big Data)
- NEP-CMP-2023-05-29 (Computational Economics)
- NEP-DES-2023-05-29 (Economic Design)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.02094. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.