IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i4p201-d1630176.html
   My bibliography  Save this article

Hybrid Machine Learning Models for Long-Term Stock Market Forecasting: Integrating Technical Indicators

Author

Listed:
  • Francis Magloire Peujio Fozap

    (Business School, Universidad de Monterrey, San Pedro Garza García 66238, Mexico)

Abstract

Stock market forecasting is a critical area in financial research, yet the inherent volatility and non-linearity of financial markets pose significant challenges for traditional predictive models. This study proposes a hybrid deep learning model, integrating Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs) with technical indicators to enhance the predictive accuracy of stock price movements. The model is evaluated using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R 2 score on the S&P 500 index over a 14-year period. Results indicate that the LSTM-CNN hybrid model achieves superior predictive performance compared to traditional models, including Support Vector Machines (SVMs), Random Forest (RF), and ARIMAs, by effectively capturing both long-term trends and short-term fluctuations. While Random Forest demonstrated the highest raw accuracy with the lowest RMSE (0.0859) and highest R 2 (0.5655), it lacked sequential learning capabilities. The LSTM-CNN model, with an RMSE of 0.1012, MAE of 0.0800, MAPE of 10.22%, and R 2 score of 0.4199, proved to be highly competitive and robust in financial time series forecasting. The study highlights the effectiveness of hybrid deep learning architectures in financial forecasting and suggests further enhancements through macroeconomic indicators, sentiment analysis, and reinforcement learning for dynamic market adaptation. It also improves risk-aware decision-making frameworks in volatile financial markets.

Suggested Citation

  • Francis Magloire Peujio Fozap, 2025. "Hybrid Machine Learning Models for Long-Term Stock Market Forecasting: Integrating Technical Indicators," JRFM, MDPI, vol. 18(4), pages 1-21, April.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:4:p:201-:d:1630176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/4/201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/4/201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raj Kumar Singh & Yashvardhan Singh & Satish Kumar & Ajay Kumar & Waleed S. Alruwaili, 2024. "Mapping Risk–Return Linkages and Volatility Spillover in BRICS Stock Markets through the Lens of Linear and Non-Linear GARCH Models," JRFM, MDPI, vol. 17(10), pages 1-26, September.
    2. Dev Shah & Haruna Isah & Farhana Zulkernine, 2019. "Stock Market Analysis: A Review and Taxonomy of Prediction Techniques," IJFS, MDPI, vol. 7(2), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Saqib Farid & Rubeena Tashfeen & Tahseen Mohsan & Arsal Burhan, 2023. "Forecasting stock prices using a data mining method: Evidence from emerging market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1911-1917, April.
    3. Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2024. "Forecasting relative returns for S&P 500 stocks using machine learning," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-16, December.
    4. Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2023. "Survey of feature selection and extraction techniques for stock market prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    5. Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
    6. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    7. Arjun Prakash & Nick James & Max Menzies & Gilad Francis, 2020. "Structural clustering of volatility regimes for dynamic trading strategies," Papers 2004.09963, arXiv.org, revised Nov 2021.
    8. Wai Khuen Cheng & Khean Thye Bea & Steven Mun Hong Leow & Jireh Yi-Le Chan & Zeng-Wei Hong & Yen-Lin Chen, 2022. "A Review of Sentiment, Semantic and Event-Extraction-Based Approaches in Stock Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    9. L.J. Basson & Sune Ferreira-Schenk & Zandri Dickason-Koekemoer, 2022. "Fractal Dimension Option Hedging Strategy Implementation During Turbulent Market Conditions in Developing and Developed Countries," International Journal of Economics and Financial Issues, Econjournals, vol. 12(2), pages 84-95, March.
    10. Veronika Staňková, 2021. "Can Machine Learning Be Useful in Corporate Finance and Business Valuation? Overview of Current Research [Může být strojové učení užitečné ve financích podniku a jeho ocenění? Přehled současného vý," Oceňování, Prague University of Economics and Business, vol. 14(4), pages 53-66.
    11. Matteo Prata & Giuseppe Masi & Leonardo Berti & Viviana Arrigoni & Andrea Coletta & Irene Cannistraci & Svitlana Vyetrenko & Paola Velardi & Novella Bartolini, 2023. "LOB-Based Deep Learning Models for Stock Price Trend Prediction: A Benchmark Study," Papers 2308.01915, arXiv.org, revised Sep 2023.
    12. Akpokerere Othuke Emmanuel & Osevwe-Okoroyibo Elizabeth Eloho & Alexander Olawumi Dabor & Eyesan Leslie Dabor & Meshack Aggreh, 2024. "Tax Revenue, Capital Market Performance and Foreign Direct Investment in an Emerging Economy," International Journal of Economics and Financial Issues, Econjournals, vol. 14(4), pages 290-298, July.
    13. Aurora Skrame & Claudio Ciancio & Vincenzo Corvello & Roberto Musmanno, 2020. "A Quantitative Model Supporting Socially Responsible Public Investment Decisions for Sustainable Tourism," IJFS, MDPI, vol. 8(2), pages 1-9, June.
    14. H. T. Shehzad & M. A. Anwar & M. Razzaq, 2023. "A Comparative Predicting Stock Prices using Heston and Geometric Brownian Motion Models," Papers 2302.07796, arXiv.org.
    15. Hakan Pabuccu & Adrian Barbu, 2024. "Feature selection with annealing for forecasting financial time series," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    16. Jean Jacques Ohana & Eric Benhamou & David Saltiel & Beatrice Guez, 2021. "Is the Covid equity bubble rational? A machine learning answer," Working Papers hal-03189799, HAL.
    17. Shalini Sharma & Víctor Elvira & Emilie Chouzenoux & Angshul Majumdar, 2021. "Recurrent Dictionary Learning for State-Space Models with an Application in Stock Forecasting," Post-Print hal-03184841, HAL.
    18. Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.
    19. Zhang, Peng & Li, Zeyun & Ghardallou, Wafa & Xin, Yan & Cao, Jie, 2023. "Nexus of institutional quality and technological innovation on renewable energy development: Moderating role of green finance," Renewable Energy, Elsevier, vol. 214(C), pages 233-241.
    20. Mahsa Ghorbani & Edwin K. P. Chong, 2022. "A dimension reduction method for stock-price prediction using multiple predictors," Operational Research, Springer, vol. 22(3), pages 2859-2878, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:4:p:201-:d:1630176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.