IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.09330.html
   My bibliography  Save this paper

Portfolio Volatility Estimation Relative to Stock Market Cross-Sectional Intrinsic Entropy

Author

Listed:
  • Claudiu Vinte
  • Marcel Ausloos

Abstract

Selecting stock portfolios and assessing their relative volatility risk compared to the market as a whole, market indices, or other portfolios is of great importance to professional fund managers and individual investors alike. Our research uses the cross-sectional intrinsic entropy (CSIE) model to estimate the cross-sectional volatility of the stock groups that can be considered together as portfolio constituents. In our study, we benchmark portfolio volatility risks against the volatility of the entire market provided by the CSIE and the volatility of market indices computed using longitudinal data. This article introduces CSIE-based betas to characterise the relative volatility risk of the portfolio against market indices and the market as a whole. We empirically prove that, through CSIE-based betas, multiple sets of symbols that outperform the market indices in terms of rate of return while maintaining the same level of risk or even lower than the one exhibited by the market index can be discovered, for any given time interval. These sets of symbols can be used as constituent stock portfolios and, in connection with the perspective provided by the CSIE volatility estimates, to hierarchically assess their relative volatility risk within the broader context of the overall volatility of the stock market.

Suggested Citation

  • Claudiu Vinte & Marcel Ausloos, 2023. "Portfolio Volatility Estimation Relative to Stock Market Cross-Sectional Intrinsic Entropy," Papers 2303.09330, arXiv.org.
  • Handle: RePEc:arx:papers:2303.09330
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.09330
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    2. Gurjeet Dhesi & Marcel Ausloos, 2016. "Modelling and Measuring the Irrational behaviour of Agents in Financial Markets: Discovering the Psychological Soliton," Papers 1601.01553, arXiv.org.
    3. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    4. González-Urteaga, Ana & Rubio, Gonzalo, 2016. "The cross-sectional variation of volatility risk premia," Journal of Financial Economics, Elsevier, vol. 119(2), pages 353-370.
    5. Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
    6. Jianqing Fan & Donggyu Kim, 2018. "Robust High-Dimensional Volatility Matrix Estimation for High-Frequency Factor Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1268-1283, July.
    7. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    8. Atanu Saha & Burton G. Malkiel & Alex Rinaudo, 2019. "Has the VIX index been manipulated?," Journal of Asset Management, Palgrave Macmillan, vol. 20(1), pages 1-14, February.
    9. Moawia Alghalith, 2016. "Estimating the Stock/Portfolio Volatility and the Volatility of Volatility: A New Simple Method," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 257-262, February.
    10. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    11. Andreia Dionisio & Rui Menezes & Diana A. Mendes, 2007. "Entropy and Uncertainty Analysis in Financial Markets," Papers 0709.0668, arXiv.org.
    12. Ausloos, Marcel, 2016. "Modelling and measuring the irrational behaviour of agents in financial markets: Discovering the psychological solitonAuthor-Name: Dhesi, Gurjeet," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 119-125.
    13. Fama, Eugene F & French, Kenneth R, 1995. "Size and Book-to-Market Factors in Earnings and Returns," Journal of Finance, American Finance Association, vol. 50(1), pages 131-155, March.
    14. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    15. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    16. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    17. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    18. Ausloos, M., 2000. "Gas-kinetic theory and Boltzmann equation of share price within an equilibrium market hypothesis and ad hoc strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 385-392.
    19. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    20. Barinov, Alexander, 2012. "Aggregate volatility risk: Explaining the small growth anomaly and the new issues puzzle," Journal of Corporate Finance, Elsevier, vol. 18(4), pages 763-781.
    21. Alan Moreira & Tyler Muir, 2017. "Volatility-Managed Portfolios," Journal of Finance, American Finance Association, vol. 72(4), pages 1611-1644, August.
    22. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    23. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. L. Wilcox & T. J. Gebbie, 2013. "On pricing kernels, information and risk," Papers 1310.4067, arXiv.org, revised Oct 2013.
    2. Javid, Attiya Yasmin & Ahmad, Eatzaz, 2008. "Testing multifactor capital asset pricing model in case of Pakistani market," MPRA Paper 37341, University Library of Munich, Germany.
    3. Martin Wallmeier, 2000. "Determinanten erwarteter Renditen am deutschen Aktienmarkt — Eine empirische Untersuchung anhand ausgewählter Kennzahlen," Schmalenbach Journal of Business Research, Springer, vol. 52(1), pages 27-57, February.
    4. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    5. Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
    6. Davison, Freddy & Marsden, Alastair & Veeraraghavan, Madhu, 2008. "Do zero-cost portfolios have the ability to predict economic growth? Evidence from Hong Kong, South Korea and Taiwan," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 1012-1028, December.
    7. Kang, Byoung Uk & In, Francis & Kim, Tong Suk, 2017. "Timescale betas and the cross section of equity returns: Framework, application, and implications for interpreting the Fama–French factors," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 15-39.
    8. Randi Næs & Johannes A. Skjeltorp & Bernt Arne Ødegaard, 2009. "What factors affect the Oslo Stock Exchange?," Working Paper 2009/24, Norges Bank.
    9. repec:bla:jfinan:v:53:y:1998:i:6:p:1975-1999 is not listed on IDEAS
    10. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.
    11. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    12. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    13. Wu, Xueping, 2002. "A conditional multifactor analysis of return momentum," Journal of Banking & Finance, Elsevier, vol. 26(8), pages 1675-1696, August.
    14. Michael Dempsey, 2015. "Stock Markets, Investments and Corporate Behavior:A Conceptual Framework of Understanding," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p1007, August.
    15. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    16. Yinxia G. Nielsen , Caren, 2013. "Is Default Risk Priced in Equity Returns?," Knut Wicksell Working Paper Series 2013/2, Lund University, Knut Wicksell Centre for Financial Studies.
    17. Christian Walkshäusl & Sebastian Lobe, 2014. "The Alternative Three†Factor Model: An Alternative beyond US Markets?," European Financial Management, European Financial Management Association, vol. 20(1), pages 33-70, January.
    18. Yannick Malevergne & Pedro Santa-Clara & Didier Sornette, 2009. "Professor Zipf goes to Wall Street," NBER Working Papers 15295, National Bureau of Economic Research, Inc.
    19. Y. Malevergne & D. Sornette, 2007. "A two-Factor Asset Pricing Model and the Fat Tail Distribution of Firm Sizes," Papers physics/0702027, arXiv.org.
    20. M. Eskandar Shah & Sourafel Girm & R. Hudson, 2012. "Rationalizing the Value Premium under Economic Fundamentals in an Emerging Market," Working Papers 12010, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
    21. Baek, Seungho & Bilson, John F.O., 2015. "Size and value risk in financial firms," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 295-326.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.09330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.