IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.11358.html
   My bibliography  Save this paper

Simple Difference-in-Differences Estimation in Fixed-T Panels

Author

Listed:
  • Nicholas Brown
  • Kyle Butts
  • Joakim Westerlund

Abstract

The present paper proposes a new treatment effects estimator that is valid when the number of time periods is small, and the parallel trends condition holds conditional on covariates and unobserved heterogeneity in the form of interactive fixed effects. The estimator also allow the control variables to be affected by treatment and it enables estimation of the resulting indirect effect on the outcome variable. The asymptotic properties of the estimator are established and their accuracy in small samples is investigated using Monte Carlo simulations. The empirical usefulness of the estimator is illustrated using as an example the effect of increased trade competition on firm markups in China.

Suggested Citation

  • Nicholas Brown & Kyle Butts & Joakim Westerlund, 2023. "Simple Difference-in-Differences Estimation in Fixed-T Panels," Papers 2301.11358, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2301.11358
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.11358
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc K. Chan & Simon S. Kwok, 2022. "The PCDID Approach: Difference-in-Differences When Trends Are Potentially Unparallel and Stochastic," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1216-1233, June.
    2. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    3. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    4. Jeffrey M. Wooldridge, 2005. "Fixed-Effects and Related Estimators for Correlated Random-Coefficient and Treatment-Effect Panel Data Models," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 385-390, May.
    5. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    6. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    7. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    8. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    9. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    10. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    11. Joakim Westerlund & Yana Petrova & Milda Norkute, 2019. "CCE in fixed‐T panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 746-761, August.
    12. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    13. Carolina Caetano & Brantly Callaway & Stroud Payne & Hugo Sant'Anna Rodrigues, 2022. "Difference in Differences with Time-Varying Covariates," Papers 2202.02903, arXiv.org, revised Jun 2024.
    14. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    15. Jörg Breitung & Philipp Hansen, 2021. "Correction to: Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 61(6), pages 3557-3558, December.
    16. Nicholas Brown & Kyle Butts, 2022. "A Unified Framework for Dynamic Treatment Effect Estimation in Interactive Fixed Effect Models," Working Paper 1495, Economics Department, Queen's University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brown, Nicholas & Westerlund, Joakim, 2023. "Testing factors in CCE," Economics Letters, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    2. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    3. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    4. Keegan Harris & Anish Agarwal & Chara Podimata & Zhiwei Steven Wu, 2022. "Strategyproof Decision-Making in Panel Data Settings and Beyond," Papers 2211.14236, arXiv.org, revised Dec 2023.
    5. Yan Sun & Wei Huang, 2022. "Quasi-maximum likelihood estimation of short panel data models with time-varying individual effects," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 93-114, January.
    6. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    7. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    8. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Boese-Schlosser, Vanessa A. & Eberhardt, Markus, 2023. "How Does Democracy Cause Growth?," Discussion Papers, Research Unit: Transformations of Democracy SP V 2023-501, WZB Berlin Social Science Center.
    10. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    11. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    12. Eberhardt, Markus, 2022. "Democracy, growth, heterogeneity, and robustness," European Economic Review, Elsevier, vol. 147(C).
    13. Oliver Linton & Maximilian Ruecker & Michael Vogt & Christopher Walsh, 2022. "Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects," Papers 2206.12152, arXiv.org, revised Nov 2024.
    14. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
    15. Evan Totty, 2017. "The Effect Of Minimum Wages On Employment: A Factor Model Approach," Economic Inquiry, Western Economic Association International, vol. 55(4), pages 1712-1737, October.
    16. Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Quantile Random-Coefficient Regression with Interactive Fixed Effects: Heterogeneous Group-Level Policy Evaluation," Papers 2208.03632, arXiv.org, revised Nov 2024.
    17. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 47/14, Institute for Fiscal Studies.
    18. Yinchu Zhu, 2019. "How well can we learn large factor models without assuming strong factors?," Papers 1910.10382, arXiv.org, revised Nov 2019.
    19. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    20. Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Janeway Institute Working Papers 2218, Faculty of Economics, University of Cambridge.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.11358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.