IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.09957.html
   My bibliography  Save this paper

Beyond Surrogate Modeling: Learning the Local Volatility Via Shape Constraints

Author

Listed:
  • Marc Chataigner
  • Areski Cousin
  • St'ephane Cr'epey
  • Matthew Dixon
  • Djibril Gueye

Abstract

We explore the abilities of two machine learning approaches for no-arbitrage interpolation of European vanilla option prices, which jointly yield the corresponding local volatility surface: a finite dimensional Gaussian process (GP) regression approach under no-arbitrage constraints based on prices, and a neural net (NN) approach with penalization of arbitrages based on implied volatilities. We demonstrate the performance of these approaches relative to the SSVI industry standard. The GP approach is proven arbitrage-free, whereas arbitrages are only penalized under the SSVI and NN approaches. The GP approach obtains the best out-of-sample calibration error and provides uncertainty quantification.The NN approach yields a smoother local volatility and a better backtesting performance, as its training criterion incorporates a local volatility regularization term.

Suggested Citation

  • Marc Chataigner & Areski Cousin & St'ephane Cr'epey & Matthew Dixon & Djibril Gueye, 2022. "Beyond Surrogate Modeling: Learning the Local Volatility Via Shape Constraints," Papers 2212.09957, arXiv.org.
  • Handle: RePEc:arx:papers:2212.09957
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.09957
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Areski Cousin & Hassan Maatouk & Didier Rulli`ere, 2016. "Kriging of financial term-structures," Papers 1604.02237, arXiv.org.
    2. Marc Chataigner & Stéphane Crépey & Matthew Dixon, 2020. "Deep Local Volatility," Post-Print hal-03910122, HAL.
    3. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    4. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    5. Cousin, Areski & Maatouk, Hassan & Rullière, Didier, 2016. "Kriging of financial term-structures," European Journal of Operational Research, Elsevier, vol. 255(2), pages 631-648.
    6. Marc Chataigner & Stéphane Crépey & Matthew Dixon, 2020. "Deep Local Volatility," Risks, MDPI, vol. 8(3), pages 1-18, August.
    7. Bachoc, François & Bevilacqua, Moreno & Velandia, Daira, 2019. "Composite likelihood estimation for a Gaussian process under fixed domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    8. Marc Chataigner & St'ephane Cr'epey & Matthew Dixon, 2020. "Deep Local Volatility," Papers 2007.10462, arXiv.org.
    9. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Cuchiero & Eva Flonner & Kevin Kurt, 2024. "Robust financial calibration: a Bayesian approach for neural SDEs," Papers 2409.06551, arXiv.org, revised Jun 2025.
    2. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    3. Ruben Wiedemann & Antoine Jacquier & Lukas Gonon, 2024. "Operator Deep Smoothing for Implied Volatility," Papers 2406.11520, arXiv.org, revised Jun 2025.
    4. Zhe Wang & Ameir Shaa & Nicolas Privault & Claude Guet, 2021. "Deep self-consistent learning of local volatility," Papers 2201.07880, arXiv.org, revised Feb 2025.
    5. Bastien Baude & Damien Challet & Ioane Muni Toke, 2025. "Optimal risk-aware interest rates for decentralized lending protocols," Papers 2502.19862, arXiv.org.
    6. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    7. Blomvall, Jörgen & Hagenbjörk, Johan, 2019. "A generic framework for monetary performance attribution," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 121-133.
    8. Hainaut, Donatien, 2021. "Lévy interest rate models with a long memory," LIDAM Discussion Papers ISBA 2021020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Hüttner, Amelie & Scherer, Matthias & Gräler, Benedikt, 2020. "Geostatistical modeling of dependent credit spreads: Estimation of large covariance matrices and imputation of missing data," Journal of Banking & Finance, Elsevier, vol. 118(C).
    10. Kapusuzoglu, Berkcan & Mahadevan, Sankaran, 2021. "Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. Johan Hagenbjörk & Jörgen Blomvall, 2019. "Simulation and evaluation of the distribution of interest rate risk," Computational Management Science, Springer, vol. 16(1), pages 297-327, February.
    12. Hassan Maatouk & Didier Rullière & Xavier Bay, 2024. "Sampling large hyperplane-truncated multivariate normal distributions," Computational Statistics, Springer, vol. 39(4), pages 1779-1806, June.
    13. François Bachoc & Emile Contal & Hassan Maatouk & Didier Rullière, 2017. "Gaussian processes for computer experiments," Post-Print hal-01665936, HAL.
    14. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    15. Realdon, Marco, 2024. "The efficiency of the Estr overnight index swap market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    16. Djibril Gueye & Kokulo Lawuobahsumo, 2023. "A Probabilistic Approach for Denoising Option Prices," International Journal of Economics and Financial Issues, Econjournals, vol. 13(2), pages 18-26, March.
    17. Stéphane Crépey & Matthew F Dixon, 2020. "Gaussian process regression for derivative portfolio modeling and application to credit valuation adjustment computations," Post-Print hal-03910109, HAL.
    18. St'ephane Cr'epey & Matthew Dixon, 2019. "Gaussian Process Regression for Derivative Portfolio Modeling and Application to CVA Computations," Papers 1901.11081, arXiv.org, revised Oct 2019.
    19. Rabitti, Giovanni & Borgonovo, Emanuele, 2020. "Is mortality or interest rate the most important risk in annuity models? A comparison of sensitivity analysis methods," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 48-58.
    20. Damir Filipovi'c & Puneet Pasricha, 2022. "Empirical Asset Pricing via Ensemble Gaussian Process Regression," Papers 2212.01048, arXiv.org, revised Jan 2025.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.09957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.