IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.10363.html
   My bibliography  Save this paper

Insurance Contract for High Renewable Energy Integration

Author

Listed:
  • Dongwei Zhao
  • Hao Wang
  • Jianwei Huang
  • Xiaojun Lin

Abstract

The increasing penetration of renewable energy poses significant challenges to power grid reliability. There have been increasing interests in utilizing financial tools, such as insurance, to help end-users hedge the potential risk of lost load due to renewable energy variability. With insurance, a user pays a premium fee to the utility, so that he will get compensated in case his demand is not fully satisfied. A proper insurance design needs to resolve the following two challenges: (i) users' reliability preference is private information; and (ii) the insurance design is tightly coupled with the renewable energy investment decision. To address these challenges, we adopt the contract theory to elicit users' private reliability preferences, and we study how the utility can jointly optimize the insurance contract and the planning of renewable energy. A key analytical challenge is that the joint optimization of the insurance design and the planning of renewables is non-convex. We resolve this difficulty by revealing important structural properties of the optimal solution, using the help of two benchmark problems: the no-insurance benchmark and the social-optimum benchmark. Compared with the no-insurance benchmark, we prove that the social cost and users' total energy cost are always no larger under the optimal contract. Simulation results show that the largest benefit of the insurance contract is achieved at a medium electricity-bill price together with a low type heterogeneity and a high renewable uncertainty.

Suggested Citation

  • Dongwei Zhao & Hao Wang & Jianwei Huang & Xiaojun Lin, 2022. "Insurance Contract for High Renewable Energy Integration," Papers 2209.10363, arXiv.org.
  • Handle: RePEc:arx:papers:2209.10363
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.10363
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuentes, Rolando & Blazquez, Jorge & Adjali, Iqbal, 2019. "From vertical to horizontal unbundling: A downstream electricity reliability insurance business model," Energy Policy, Elsevier, vol. 129(C), pages 796-804.
    2. Fuentes, Rolando & Sengupta, Abhijit, 2020. "Using insurance to manage reliability in the distributed electricity sector: Insights from an agent-based model," Energy Policy, Elsevier, vol. 139(C).
    3. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    4. Billimoria, Farhad & Poudineh, Rahmatallah, 2019. "Market design for resource adequacy: A reliability insurance overlay on energy-only electricity markets," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    5. Farhad Billimoria & Filiberto Fele & Iacopo Savelli & Thomas Morstyn & Malcolm McCulloch, 2021. "On the Design of an Insurance Mechanism for Reliability Differentiation in Electricity Markets," Papers 2106.14351, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farhad Billimoria & Filiberto Fele & Iacopo Savelli & Thomas Morstyn & Malcolm McCulloch, 2023. "An Insurance Paradigm for Improving Power System Resilience via Distributed Investment," Papers 2302.01456, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farhad Billimoria & Filiberto Fele & Iacopo Savelli & Thomas Morstyn & Malcolm McCulloch, 2021. "On the Design of an Insurance Mechanism for Reliability Differentiation in Electricity Markets," Papers 2106.14351, arXiv.org.
    2. Chi-Keung Woo & Jay Zarnikau & Asher Tishler & Kang Hua Cao, 2022. "Insuring a Small Retail Electric Provider’s Procurement Cost Risk in Texas," Energies, MDPI, vol. 16(1), pages 1-12, December.
    3. Farhad Billimoria & Filiberto Fele & Iacopo Savelli & Thomas Morstyn & Malcolm McCulloch, 2023. "An Insurance Paradigm for Improving Power System Resilience via Distributed Investment," Papers 2302.01456, arXiv.org.
    4. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    5. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    6. Farhad Billimoria & Paul Simshauser, 2023. "Contract design for storage in hybrid electricity markets," Working Papers EPRG2304, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Mohamed Gaha & Bilal Chabane & Dragan Komljenovic & Alain Côté & Claude Hébert & Olivier Blancke & Atieh Delavari & Georges Abdul-Nour, 2021. "Global Methodology for Electrical Utilities Maintenance Assessment Based on Risk-Informed Decision Making," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    8. Yu-Chung Tsao & Thuy-Linh Vu, 2023. "Electricity pricing, capacity, and predictive maintenance considering reliability," Annals of Operations Research, Springer, vol. 322(2), pages 991-1011, March.
    9. Han Shu & Jacob Mays, 2022. "Beyond capacity: contractual form in electricity reliability obligations," Papers 2210.10858, arXiv.org.
    10. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    11. Vennemo, Haakon & Rosnes, Orvika & Skulstad, Andreas, 2022. "The cost to households of a large electricity outage," Energy Economics, Elsevier, vol. 116(C).
    12. Peng, Donna & Poudineh, Rahmatallah, 2019. "Electricity market design under increasing renewable energy penetration: Misalignments observed in the European Union," Utilities Policy, Elsevier, vol. 61(C).
    13. Ovaere, Marten, 2023. "Cost-efficiency and quality regulation of energy network utilities," Energy Economics, Elsevier, vol. 120(C).
    14. Samuli Honkapuro & Jasmin Jaanto & Salla Annala, 2023. "A Systematic Review of European Electricity Market Design Options," Energies, MDPI, vol. 16(9), pages 1-26, April.
    15. Fuentes, Rolando & Sengupta, Abhijit, 2020. "Using insurance to manage reliability in the distributed electricity sector: Insights from an agent-based model," Energy Policy, Elsevier, vol. 139(C).
    16. Chen, Hao & Chen, Xi & Niu, Jinye & Xiang, Mengyu & He, Weijun & Küfeoğlu, Sinan, 2021. "Estimating the marginal cost of reducing power outage durations in China: A parametric distance function approach," Energy Policy, Elsevier, vol. 155(C).
    17. Billimoria, Farhad & Fele, Filiberto & Savelli, Iacopo & Morstyn, Thomas & McCulloch, Malcolm, 2022. "An insurance mechanism for electricity reliability differentiation under deep decarbonization," Applied Energy, Elsevier, vol. 321(C).
    18. Simshauser, P., 2021. "Rooftop Solar PV and the Peak Load Problem in the NEM’s Queensland Region," Cambridge Working Papers in Economics 2180, Faculty of Economics, University of Cambridge.
    19. Astier, Nicolas & Ovaere, Marten, 2022. "Reliability standards and generation adequacy assessments for interconnected electricity systems," Energy Policy, Elsevier, vol. 168(C).
    20. Hochberg, Michael & Poudineh, Rahmatallah, 2021. "The Brazilian electricity market architecture: An analysis of instruments and misalignments," Utilities Policy, Elsevier, vol. 72(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.10363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.