IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.07159.html
   My bibliography  Save this paper

A Hybrid Approach on Conditional GAN for Portfolio Analysis

Author

Listed:
  • Jun Lu
  • Danny Ding

Abstract

Over the decades, the Markowitz framework has been used extensively in portfolio analysis though it puts too much emphasis on the analysis of the market uncertainty rather than on the trend prediction. While generative adversarial network (GAN), conditional GAN (CGAN), and autoencoding CGAN (ACGAN) have been explored to generate financial time series and extract features that can help portfolio analysis. The limitation of the CGAN or ACGAN framework stands in putting too much emphasis on generating series and finding the internal trends of the series rather than predicting the future trends. In this paper, we introduce a hybrid approach on conditional GAN based on deep generative models that learns the internal trend of historical data while modeling market uncertainty and future trends. We evaluate the model on several real-world datasets from both the US and Europe markets, and show that the proposed HybridCGAN and HybridACGAN models lead to better portfolio allocation compared to the existing Markowitz, CGAN, and ACGAN approaches.

Suggested Citation

  • Jun Lu & Danny Ding, 2022. "A Hybrid Approach on Conditional GAN for Portfolio Analysis," Papers 2208.07159, arXiv.org.
  • Handle: RePEc:arx:papers:2208.07159
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.07159
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Lu & Shao Yi, 2022. "Reducing Overestimating and Underestimating Volatility via the Augmented Blending-ARCH Model," Applied Economics and Finance, Redfame publishing, vol. 9(2), pages 48-59, May.
    2. Green, Richard C & Hollifield, Burton, 1992. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    3. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    4. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    5. Jun Lu & Shao Yi, 2022. "Autoencoding Conditional GAN for Portfolio Allocation Diversification," Papers 2207.05701, arXiv.org.
    6. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    7. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Florian Eckerli & Joerg Osterrieder, 2021. "Generative Adversarial Networks in finance: an overview," Papers 2106.06364, arXiv.org, revised Jul 2021.
    10. Jun Lu & Shao Yi, 2022. "Reducing overestimating and underestimating volatility via the augmented blending-ARCH model," Papers 2203.12456, arXiv.org.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Lu & Shao Yi, 2022. "Autoencoding Conditional GAN for Portfolio Allocation Diversification," Applied Economics and Finance, Redfame publishing, vol. 9(3), pages 55-68, August.
    2. Jun Lu & Shao Yi, 2022. "Autoencoding Conditional GAN for Portfolio Allocation Diversification," Papers 2207.05701, arXiv.org.
    3. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    4. Jos'e-Manuel Pe~na & Fernando Su'arez & Omar Larr'e & Domingo Ram'irez & Arturo Cifuentes, 2023. "A Modified CTGAN-Plus-Features Based Method for Optimal Asset Allocation," Papers 2302.02269, arXiv.org, revised Feb 2023.
    5. Sheriffdeen A. Tella & Olumuyiwa G. Yinusa & Ayinde Taofeek Olusola & Saban Celik, 2011. "Global Economic Crisis And Stock Markets Efficiency: Evidence From Selected Africa Countries," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 25(1), pages 139-169.
    6. Remes, Piia, 2013. "Putting a Price on Carbon – Econometric Essays on the European Union Emissions Trading Scheme and its Impacts," Research Reports 62, VATT Institute for Economic Research.
    7. David Moreno & Paulina Marco & Ignacio Olmeda, 2005. "Risk forecasting models and optimal portfolio selection," Applied Economics, Taylor & Francis Journals, vol. 37(11), pages 1267-1281.
    8. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
    9. Harris, Richard D.F. & Stoja, Evarist & Tan, Linzhi, 2017. "The dynamic Black–Litterman approach to asset allocation," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1085-1096.
    10. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02000726, HAL.
    11. Aatola, Piia, 2013. "Putting a Price on Carbon – Econometric Essays on the European Union Emissions Trading Scheme and its Impacts," Research Reports P62, VATT Institute for Economic Research.
    12. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & María de la Cruz Del Río-Rama & José Álvarez-García, 2022. "Using Markov-Switching Models in US Stocks Optimal Portfolio Selection in a Black–Litterman Context (Part 1)," Mathematics, MDPI, vol. 10(8), pages 1-28, April.
    13. Wenbo Ge & Pooia Lalbakhsh & Leigh Isai & Artem Lensky & Hanna Suominen, 2023. "Comparing Deep Learning Models for the Task of Volatility Prediction Using Multivariate Data," Papers 2306.12446, arXiv.org, revised Jun 2023.
    14. Mazin Al Janabi, 2013. "Optimal and coherent economic-capital structures: evidence from long and short-sales trading positions under illiquid market perspectives," Annals of Operations Research, Springer, vol. 205(1), pages 109-139, May.
    15. Coqueret, Guillaume, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 180-201.
    16. Oscar De la Torre Torres., 2013. "Orthogonal GARCH matrixes in the active portfolio management of defined benefit pension plans: A test for Michoacán," Economía: teoría y práctica, Universidad Autónoma Metropolitana, México, vol. 39(2), pages 119-144, Julio-Dic.
    17. Parul Bhatia & Priya Gupta, 2020. "Sub-prime Crisis or COVID-19: A Comparative Analysis of Volatility in Indian Banking Sectoral Indices," FIIB Business Review, , vol. 9(4), pages 286-299, December.
    18. Chen, Min & Zhu, Ke, 2014. "Sign-based specification tests for martingale difference with conditional heteroscedasity," MPRA Paper 56347, University Library of Munich, Germany.
    19. Hlouskova, Jaroslava & Schmidheiny, Kurt & Wagner, Martin, 2009. "Multistep predictions for multivariate GARCH models: Closed form solution and the value for portfolio management," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 330-336, March.
    20. Stefanescu, Răzvan & Dumitriu, Ramona, 2016. "The impact of the Great Lent and of the Nativity Fast on the Bucharest Stock Exchange," MPRA Paper 89023, University Library of Munich, Germany, revised 22 Dec 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.07159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.