IDEAS home Printed from https://ideas.repec.org/a/ety/journl/v39y2013i2p119-144.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Orthogonal GARCH matrixes in the active portfolio management of defined benefit pension plans: A test for Michoacán

Author

Listed:
  • Oscar De la Torre Torres.

    (Universidad Michoacana de San Nicolás de Hidalgo.)

Abstract

This paper presents the usefulness of an active portfolio management process with orthogonal garch (ogarch) matrixes in order to achieve a 7.5% actuarial target return in defined benefit pension funds such as the Dirección de Pensiones Civiles del Estado de Michoacán. To prove this, four discrete event simulations were performed using, in the first scenario, a passive portfolio management process with a target position rebalancing discipline and, in the other three, an active portfolio management with a range portfolio rebalancing one. In these last three simulations, a constant covariance, a Gaussian distribution ogarch and a Student's t-distribution ogarch covariance matrix were used. The attained results suggest that the Student's t-distribution ogarch matrix is the most suitable for the investment process.

Suggested Citation

  • Oscar De la Torre Torres., 2013. "Orthogonal GARCH matrixes in the active portfolio management of defined benefit pension plans: A test for Michoacán," Economía: teoría y práctica, Universidad Autónoma Metropolitana, México, vol. 39(2), pages 119-144, Julio-Dic.
  • Handle: RePEc:ety:journl:v:39:y:2013:i:2:p:119-144
    DOI: 10.24275/ETYPUAM/NE/392013/DelaTorre
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.24275/ETYPUAM/NE/392013/DelaTorre
    Download Restriction: no

    File URL: https://libkey.io/10.24275/ETYPUAM/NE/392013/DelaTorre?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    2. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    3. Vernon L. Smith, 1962. "An Experimental Study of Competitive Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 70(3), pages 322-322.
    4. Daniel, Kent, et al, 1997. "Measuring Mutual Fund Performance with Characteristic-Based Benchmarks," Journal of Finance, American Finance Association, vol. 52(3), pages 1035-1058, July.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    8. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    9. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    2. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    3. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    4. Francq, Christian & Zakoian, Jean-Michel, 2014. "Estimating multivariate GARCH and stochastic correlation models equation by equation," MPRA Paper 54250, University Library of Munich, Germany.
    5. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    6. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    7. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
    8. Lakshina, Valeriya, 2020. "Do portfolio investors need to consider the asymmetry of returns on the Russian stock market?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    9. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    10. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    11. Dimson, Elroy & Mussavian, Massoud, 1999. "Three centuries of asset pricing," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1745-1769, December.
    12. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & María de la Cruz Del Río-Rama & José Álvarez-García, 2022. "Using Markov-Switching Models in US Stocks Optimal Portfolio Selection in a Black–Litterman Context (Part 1)," Mathematics, MDPI, vol. 10(8), pages 1-28, April.
    13. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, December.
    14. Martin Vojtek, 2004. "Calibration of Interest Rate Models - Transition Market Case," CERGE-EI Working Papers wp237, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    15. H. J. Turtle & Kainan Wang, 2014. "Modeling Conditional Covariances With Economic Information Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 217-236, April.
    16. Francisco Blasques & Enzo D'Innocenzo & Siem Jan Koopman, 2021. "Common and Idiosyncratic Conditional Volatility Factors: Theory and Empirical Evidence," Tinbergen Institute Discussion Papers 21-057/III, Tinbergen Institute.
    17. Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
    18. Zexuan Yin & Paolo Barucca, 2022. "Variational Heteroscedastic Volatility Model," Papers 2204.05806, arXiv.org.
    19. Rayadurgam, Vikram Chandramouli & Mangalagiri, Jayasree, 2023. "Does inclusion of GARCH variance in deep learning models improve financial contagion prediction?," Finance Research Letters, Elsevier, vol. 54(C).
    20. Thilo A. Schmitt & Rudi Schäfer & Dominik Wied & Thomas Guhr, 2016. "Spatial dependence in stock returns: local normalization and VaR forecasts," Empirical Economics, Springer, vol. 50(3), pages 1091-1109, May.

    More about this item

    Keywords

    portfolio choice; asset pricing; financial forecasting and simulation; hypothesis testing.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ety:journl:v:39:y:2013:i:2:p:119-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Georgina Alenka Guzmán Chávez (email available below). General contact details of provider: https://edirc.repec.org/data/etyuamx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.