IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.10871.html
   My bibliography  Save this paper

Financial Time Series Analysis and Forecasting with HHT Feature Generation and Machine Learning

Author

Listed:
  • Tim Leung
  • Theodore Zhao

Abstract

We present the method of complementary ensemble empirical mode decomposition (CEEMD) and Hilbert-Huang transform (HHT) for analyzing nonstationary financial time series. This noise-assisted approach decomposes any time series into a number of intrinsic mode functions, along with the corresponding instantaneous amplitudes and instantaneous frequencies. Different combinations of modes allow us to reconstruct the time series using components of different timescales. We then apply Hilbert spectral analysis to define and compute the associated instantaneous energy-frequency spectrum to illustrate the properties of various timescales embedded in the original time series. Using HHT, we generate a collection of new features and integrate them into machine learning models, such as regression tree ensemble, support vector machine (SVM), and long short-term memory (LSTM) neural network. Using empirical financial data, we compare several HHT-enhanced machine learning models in terms of forecasting performance.

Suggested Citation

  • Tim Leung & Theodore Zhao, 2021. "Financial Time Series Analysis and Forecasting with HHT Feature Generation and Machine Learning," Papers 2105.10871, arXiv.org.
  • Handle: RePEc:arx:papers:2105.10871
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.10871
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2018. "Dynamic correlations at different time-scales with empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 534-544.
    2. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
    3. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    4. Ling Tang & Wei Dai & Lean Yu & Shouyang Wang, 2015. "A Novel CEEMD-Based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 141-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Shen & Ping Wang & Xuesong Wang & Ke Sun, 2021. "Application of Empirical Mode Decomposition and Extreme Learning Machine Algorithms on Prediction of the Surface Vibration Signal," Energies, MDPI, vol. 14(22), pages 1-16, November.
    2. Tim Leung & Theodore Zhao, 2022. "Adaptive complementary ensemble EMD and energy-frequency spectra of cryptocurrency prices," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-23, March.
    3. Xu, Chao & Zhao, Xiaojun & Wang, Yanwen, 2022. "Causal decomposition on multiple time scales: Evidence from stock price-volume time series," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Yu-Ting Bai & Wei Jia & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong & Zhi-Gang Shi, 2023. "Nonstationary Time Series Prediction Based on Deep Echo State Network Tuned by Bayesian Optimization," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
    5. Tim Leung & Theodore Zhao, 2023. "Multiscale Volatility Analysis for Noisy High-Frequency Prices," Risks, MDPI, vol. 11(7), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Leung & Theodore Zhao, 2022. "Adaptive complementary ensemble EMD and energy-frequency spectra of cryptocurrency prices," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-23, March.
    2. Tim Leung & Theodore Zhao, 2021. "Multiscale Decomposition and Spectral Analysis of Sector ETF Price Dynamics," JRFM, MDPI, vol. 14(10), pages 1-22, October.
    3. Faramarz Saghi & Mustafa Jahangoshai Rezaee, 2023. "Integrating Wavelet Decomposition and Fuzzy Transformation for Improving the Accuracy of Forecasting Crude Oil Price," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 559-591, February.
    4. Engin Tas & Ayca Hatice Atli, 2024. "Stock Price Ranking by Learning Pairwise Preferences," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 513-528, February.
    5. Flavio Barboza & Geraldo Nunes Silva & José Augusto Fiorucci, 2023. "A review of artificial intelligence quality in forecasting asset prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1708-1728, November.
    6. Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
    7. Dionne, Georges & Koumou, Gilles Boevi, 2018. "Machine Learning and Risk Management: SVDD Meets RQE," Working Papers 18-6, HEC Montreal, Canada Research Chair in Risk Management.
    8. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    9. Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, vol. 11(7), pages 1-17, July.
    10. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    11. Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    12. Yuanrong Wang & Yinsen Miao & Alexander CY Wong & Nikita P Granger & Christian Michler, 2023. "Domain-adapted Learning and Interpretability: DRL for Gas Trading," Papers 2301.08359, arXiv.org, revised Sep 2023.
    13. Tang, Ling & Wu, Yao & Yu, Lean, 2018. "A randomized-algorithm-based decomposition-ensemble learning methodology for energy price forecasting," Energy, Elsevier, vol. 157(C), pages 526-538.
    14. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    15. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    16. Bai, Yun & Li, Xixi & Yu, Hao & Jia, Suling, 2022. "Crude oil price forecasting incorporating news text," International Journal of Forecasting, Elsevier, vol. 38(1), pages 367-383.
    17. Emmanuel Senyo Fianu, 2022. "Analyzing and Forecasting Multi-Commodity Prices Using Variants of Mode Decomposition-Based Extreme Learning Machine Hybridization Approach," Forecasting, MDPI, vol. 4(2), pages 1-27, June.
    18. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
    19. Anqiang Huang & Xinjun Liu & Changrui Rao & Yi Zhang & Yifan He, 2022. "A New Container Throughput Forecasting Paradigm under COVID-19," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    20. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.10871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.