IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.04511.html
   My bibliography  Save this paper

Least squares Monte Carlo methods in stochastic Volterra rough volatility models

Author

Listed:
  • Henrique Guerreiro
  • Jo~ao Guerra

Abstract

In stochastic Volterra rough volatility models, the volatility follows a truncated Brownian semi-stationary process with stochastic vol-of-vol. Recently, efficient VIX pricing Monte Carlo methods have been proposed for the case where the vol-of-vol is Markovian and independent of the volatility. Following recent empirical data, we discuss the VIX option pricing problem for a generalized framework of these models, where the vol-of-vol may depend on the volatility and/or not be Markovian. In such a setting, the aforementioned Monte Carlo methods are not valid. Moreover, the classical least squares Monte Carlo faces exponentially increasing complexity with the number of grid time steps, whilst the nested Monte Carlo method requires a prohibitive number of simulations. By exploring the infinite dimensional Markovian representation of these models, we device a scalable least squares Monte Carlo for VIX option pricing. We apply our method firstly under the independence assumption for benchmarks, and then to the generalized framework. We also discuss the rough vol-of-vol setting, where Markovianity of the vol-of-vol is not present. We present simulations and benchmarks to establish the efficiency of our method.

Suggested Citation

  • Henrique Guerreiro & Jo~ao Guerra, 2021. "Least squares Monte Carlo methods in stochastic Volterra rough volatility models," Papers 2105.04511, arXiv.org.
  • Handle: RePEc:arx:papers:2105.04511
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.04511
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. J'er^ome Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Papers 1901.05672, arXiv.org, revised Jul 2020.
    3. Ryan McCrickerd & Mikko S. Pakkanen, 2018. "Turbocharging Monte Carlo pricing for the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1877-1886, November.
    4. Henry Stone, 2018. "Calibrating rough volatility models: a convolutional neural network approach," Papers 1812.05315, arXiv.org, revised Jul 2019.
    5. Ryan McCrickerd & Mikko S. Pakkanen, 2017. "Turbocharging Monte Carlo pricing for the rough Bergomi model," Papers 1708.02563, arXiv.org, revised Mar 2018.
    6. Jérôme Lelong, 2020. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Post-Print hal-01983115, HAL.
    7. repec:cdl:anderf:qt43n1k4jb is not listed on IDEAS
    8. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2019. "Deep Learning Volatility," Papers 1901.09647, arXiv.org, revised Aug 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henrique Guerreiro & Jo~ao Guerra, 2022. "VIX pricing in the rBergomi model under a regime switching change of measure," Papers 2201.10391, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrique Guerreiro & João Guerra, 2021. "Least squares Monte Carlo methods in stochastic Volterra rough volatility models," Working Papers REM 2021/0176, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    2. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    3. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    4. Christian Bayer & Luca Pelizzari & Jia-Jie Zhu, 2025. "Pricing American options under rough volatility using deep-signatures and signature-kernels," Papers 2501.06758, arXiv.org, revised Jun 2025.
    5. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    6. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    7. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Papers 2212.10917, arXiv.org, revised May 2023.
    8. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    9. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    10. Martin Keller-Ressel, 2022. "Bartlett's Delta revisited: Variance-optimal hedging in the lognormal SABR and in the rough Bergomi model," Papers 2207.13573, arXiv.org.
    11. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    12. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    13. Qinwen Zhu & Gr'egoire Loeper & Wen Chen & Nicolas Langren'e, 2020. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Papers 2007.02113, arXiv.org.
    14. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    15. Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
    16. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    17. Alòs, Elisa & Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2023. "CVA in fractional and rough volatility models," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    18. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    19. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    20. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Post-Print hal-03902513, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.04511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.