IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.09412.html
   My bibliography  Save this paper

Joint deep calibration of the 4-factor PDV model

Author

Listed:
  • Fabio Baschetti
  • Giacomo Bormetti
  • Pietro Rossi

Abstract

Joint calibration to SPX and VIX market data is a delicate task that requires sophisticated modeling and incurs significant computational costs. The latter is especially true when pricing of volatility derivatives hinges on nested Monte Carlo simulation. One such example is the 4-factor Markov Path-Dependent Volatility (PDV) model of Guyon and Lekeufack (2023). Nonetheless, its realism has earned it considerable attention in recent years. Gazzani and Guyon (2025) marked a relevant contribution by learning the VIX as a random variable, i.e., a measurable function of the model parameters and the Markovian factors. A neural network replaces the inner simulation and makes the joint calibration problem accessible. However, the minimization loop remains slow due to expensive outer simulation. The present paper overcomes this limitation by learning SPX implied volatilities, VIX futures, and VIX call option prices. The pricing functions reduce to simple matrix-vector products that can be evaluated on the fly, shrinking calibration times to just a few seconds.

Suggested Citation

  • Fabio Baschetti & Giacomo Bormetti & Pietro Rossi, 2025. "Joint deep calibration of the 4-factor PDV model," Papers 2507.09412, arXiv.org.
  • Handle: RePEc:arx:papers:2507.09412
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.09412
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henrique Guerreiro & Jo~ao Guerra, 2021. "Least squares Monte Carlo methods in stochastic Volterra rough volatility models," Papers 2105.04511, arXiv.org.
    2. P. Blanc & J. Donier & J.-P. Bouchaud, 2017. "Quadratic Hawkes processes for financial prices," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 171-188, February.
    3. Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org, revised Jul 2024.
    4. Julien Guyon, 2024. "Dispersion-constrained martingale Schrödinger problems and the exact joint S&P 500/VIX smile calibration puzzle," Finance and Stochastics, Springer, vol. 28(1), pages 27-79, January.
    5. Gilles Zumbach, 2009. "Time reversal invariance in finance," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 505-515.
    6. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    7. Fabio Baschetti & Giacomo Bormetti & Pietro Rossi, 2023. "Deep calibration with random grids," Papers 2306.11061, arXiv.org, revised Jan 2024.
    8. Shuaiqiang Liu & Anastasia Borovykh & Lech A. Grzelak & Cornelis W. Oosterlee, 2019. "A neural network-based framework for financial model calibration," Papers 1904.10523, arXiv.org.
    9. Léo Parent, 2023. "The EWMA Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 23(1), pages 71-93, January.
    10. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    11. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    12. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    13. Gilles Zumbach, 2010. "Volatility conditional on price trends," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 431-442.
    14. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Post-Print hal-04373380, HAL.
    15. Fabio Baschetti & Giacomo Bormetti & Silvia Romagnoli & Pietro Rossi, 2022. "The SINC way: a fast and accurate approach to Fourier pricing," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 427-446, March.
    16. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
    17. Eduardo Abi Jaber & Camille Illand & Shaun (Xiaoyuan) Li, 2025. "Joint SPX & VIX calibration with Gaussian polynomial volatility models: Deep pricing with quantization hints," Mathematical Finance, Wiley Blackwell, vol. 35(2), pages 470-519, April.
    18. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    19. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    20. Fabio Baschetti & Giacomo Bormetti & Pietro Rossi, 2024. "Deep calibration with random grids," Quantitative Finance, Taylor & Francis Journals, vol. 24(9), pages 1263-1285, September.
    21. Enrique Sentana, 1995. "Quadratic ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
    22. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv.
    23. Julien Guyon & Florian Bourgey, 2024. "Fast Exact Joint S&P 500/VIX Smile Calibration in Discrete and Continuous Time," Post-Print hal-03932808, HAL.
    24. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    25. Henrique Guerreiro & João Guerra, 2021. "Least squares Monte Carlo methods in stochastic Volterra rough volatility models," Working Papers REM 2021/0176, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    26. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Gazzani & Julien Guyon, 2024. "Pricing and calibration in the 4-factor path-dependent volatility model," Papers 2406.02319, arXiv.org, revised Feb 2025.
    2. Ofelia Bonesini & Emilio Ferrucci & Ioannis Gasteratos & Antoine Jacquier, 2024. "Rough differential equations for volatility," Papers 2412.21192, arXiv.org.
    3. Fabio Baschetti & Giacomo Bormetti & Pietro Rossi, 2023. "Deep calibration with random grids," Papers 2306.11061, arXiv.org, revised Jan 2024.
    4. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
    5. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    6. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    7. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03902513, HAL.
    8. Léo Parent, 2022. "The EWMA Heston model," Post-Print hal-04431111, HAL.
    9. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    10. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Aug 2025.
    11. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Post-Print hal-03902513, HAL.
    12. Julien Guyon, 2024. "Dispersion-constrained martingale Schrödinger problems and the exact joint S&P 500/VIX smile calibration puzzle," Finance and Stochastics, Springer, vol. 28(1), pages 27-79, January.
    13. Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
    14. Martino Grasselli & Gilles Pag`es, 2025. "Strong Solutions and Quantization-Based Numerical Schemes for a Class of Non-Markovian Volatility Models," Papers 2503.00243, arXiv.org.
    15. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "Efficient simulation of a new class of Volterra-type SDEs," Papers 2306.02708, arXiv.org, revised Oct 2025.
    16. Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org, revised Jul 2024.
    17. Eduardo Abi Jaber & Donatien Hainaut & Edouard Motte, 2025. "The Volterra Stein-Stein model with stochastic interest rates," Papers 2503.01716, arXiv.org, revised Jul 2025.
    18. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    19. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.
    20. Siu Hin Tang & Mathieu Rosenbaum & Chao Zhou, 2023. "Forecasting Volatility with Machine Learning and Rough Volatility: Example from the Crypto-Winter," Papers 2311.04727, arXiv.org, revised Feb 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.