IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.11455.html
   My bibliography  Save this paper

Macroeconomic factors for inflation in Argentine 2013-2019

Author

Listed:
  • Manuel Lopez Galvan

Abstract

The aim of this paper is to investigate the use of the Factor Analysis in order to identify the role of the relevant macroeconomic variables in driving the inflation. The Macroeconomic predictors that usually affect the inflation are summarized using a small number of factors constructed by the principal components. This allows us to identify the crucial role of money growth, inflation expectation and exchange rate in driving the inflation. Then we use this factors to build econometric models to forecast inflation. Specifically, we use univariate and multivariate models such as classical autoregressive, Factor models and FAVAR models. Results of forecasting suggest that models which incorporate more economic information outperform the benchmark. Furthermore, causality test and impulse response are performed in order to examine the short-run dynamics of inflation to shocks in the principal factors.

Suggested Citation

  • Manuel Lopez Galvan, 2020. "Macroeconomic factors for inflation in Argentine 2013-2019," Papers 2005.11455, arXiv.org.
  • Handle: RePEc:arx:papers:2005.11455
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.11455
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    2. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    3. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    4. MacKinnon, James G, 1994. "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 167-176, April.
    5. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    3. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    4. Ralf Brüggemann & Christian Kascha, 2017. "Directed Graphs and Variable Selection in Large Vector Autoregressive Models," Working Paper Series of the Department of Economics, University of Konstanz 2017-06, Department of Economics, University of Konstanz.
    5. Skripnikov, A. & Michailidis, G., 2019. "Joint estimation of multiple network Granger causal models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 120-133.
    6. Bernoth, Kerstin & Pick, Andreas, 2011. "Forecasting the fragility of the banking and insurance sectors," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 807-818, April.
    7. Hwee Kwan Chow & Keen Meng Choy, 2009. "Analyzing and forecasting business cycles in a small open economy: A dynamic factor model for Singapore," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2009(1), pages 19-41.
    8. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    9. Kyle E. Binder & Mohsen Pourahmadi & James W. Mjelde, 2020. "The role of temporal dependence in factor selection and forecasting oil prices," Empirical Economics, Springer, vol. 58(3), pages 1185-1223, March.
    10. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    11. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    12. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    13. Gilchrist, Simon & Yankov, Vladimir & Zakrajsek, Egon, 2009. "Credit market shocks and economic fluctuations: Evidence from corporate bond and stock markets," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 471-493, May.
    14. Branimir, Jovanovic & Magdalena, Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," MPRA Paper 43162, University Library of Munich, Germany.
    15. Branimir Jovanovic & Magdalena Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," Working Papers 2010-02, National Bank of the Republic of North Macedonia, revised Aug 2010.
    16. Varlam Kutateladze, 2021. "The Kernel Trick for Nonlinear Factor Modeling," Papers 2103.01266, arXiv.org.
    17. Calvo-Pardo, Hector & Mancini, Tullio & Olmo, Jose, 2021. "Granger causality detection in high-dimensional systems using feedforward neural networks," International Journal of Forecasting, Elsevier, vol. 37(2), pages 920-940.
    18. Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
    19. Matteo Barigozzi & Giuseppe Cavaliere & Graziano Moramarco, 2022. "Factor Network Autoregressions," Papers 2208.02925, arXiv.org, revised Feb 2024.
    20. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.11455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.