IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.01528.html
   My bibliography  Save this paper

On Shortfall Risk Minimization for Game Options

Author

Listed:
  • Yan Dolinsky

Abstract

In this paper we study the existence of an optimal hedging strategy for the shortfall risk measure in the game options setup. We consider the continuous time Black--Scholes (BS) model. Our first result says that in the case where the game contingent claim (GCC) can be exercised only on a finite set of times, there exists an optimal strategy. Our second and main result is an example which demonstrates that for the case where the GCC can be stopped on the all time interval, optimal portfolio strategies need not always exist.

Suggested Citation

  • Yan Dolinsky, 2020. "On Shortfall Risk Minimization for Game Options," Papers 2002.01528, arXiv.org.
  • Handle: RePEc:arx:papers:2002.01528
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.01528
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miklós Rásonyi & Andrea Rodrigues, 2013. "Optimal portfolio choice for a behavioural investor in continuous-time markets," Annals of Finance, Springer, vol. 9(2), pages 291-318, May.
    2. Andreas Kyprianou, 2004. "Some calculations for Israeli options," Finance and Stochastics, Springer, vol. 8(1), pages 73-86, January.
    3. Jan Kallsen & Christoph Kühn, 2004. "Pricing derivatives of American and game type in incomplete markets," Finance and Stochastics, Springer, vol. 8(2), pages 261-284, May.
    4. Miklos Rasonyi & Andrea M. Rodrigues, 2012. "Optimal Portfolio Choice for a Behavioural Investor in Continuous-Time Markets," Papers 1202.0628, arXiv.org, revised Apr 2013.
    5. Yoshio Ohtsubo, 1986. "Optimal Stopping in Sequential Games With or Without a Constraint of Always Terminating," Mathematics of Operations Research, INFORMS, vol. 11(4), pages 591-607, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuri Kifer, 2012. "Dynkin Games and Israeli Options," Papers 1209.1791, arXiv.org.
    2. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    3. Gapeev Pavel V. & Kühn Christoph, 2005. "Perpetual convertible bonds in jump-diffusion models," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 15-31, January.
    4. Ivan Guo & Marek Rutkowski, 2017. "Arbitrage-free pricing of multi-person game claims in discrete time," Finance and Stochastics, Springer, vol. 21(1), pages 111-155, January.
    5. Zaevski, Tsvetelin S., 2020. "Discounted perpetual game put options," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Benjamin Gottesman Berdah, 2020. "Recombining tree approximations for Game Options in Local Volatility models," Papers 2007.02323, arXiv.org, revised Jul 2020.
    7. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.
    8. Rubbenstroth, Bodo, 2019. "Game Options under Knightian Uncertainty in Discrete Time," Center for Mathematical Economics Working Papers 619, Center for Mathematical Economics, Bielefeld University.
    9. Huang, Haishi, 2010. "Convertible Bonds: Risks and Optimal Strategies," Bonn Econ Discussion Papers 07/2010, University of Bonn, Bonn Graduate School of Economics (BGSE).
    10. Hsuan-Ku Liu, 2013. "The pricing formula for cancellable European options," Papers 1304.5962, arXiv.org, revised Sep 2014.
    11. Mikl'os R'asonyi & Andrea Meireles-Rodrigues, 2018. "On Utility Maximisation Under Model Uncertainty in Discrete-Time Markets," Papers 1801.06860, arXiv.org, revised Jul 2020.
    12. Baurdoux, Erik J. & Kyprianou, Andreas E., 2004. "Further calculations for Israeli options," LSE Research Online Documents on Economics 23916, London School of Economics and Political Science, LSE Library.
    13. Tianyang Nie & Edward Kim & Marek Rutkowski, 2018. "Arbitrage-Free Pricing of Game Options in Nonlinear Markets," Papers 1807.05448, arXiv.org.
    14. Ivan Guo & Marek Rutkowski, 2014. "Arbitrage Pricing of Multi-person Game Contingent Claims," Papers 1405.2718, arXiv.org.
    15. Mikl'os R'asonyi & Andrea Meireles Rodrigues, 2013. "Continuous-Time Portfolio Optimisation for a Behavioural Investor with Bounded Utility on Gains," Papers 1309.0362, arXiv.org, revised Mar 2014.
    16. Miklós Rásonyi & Andrea Meireles‐Rodrigues, 2021. "On utility maximization under model uncertainty in discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 149-175, January.
    17. Miklos Rasonyi, 2014. "Optimal investment with bounded above utilities in discrete time markets," Papers 1409.2023, arXiv.org.
    18. Mikl'os R'asonyi & Jos'e Gregorio Rodr'iguez-Villarreal, 2015. "Optimal investment under behavioural criteria in incomplete diffusion market models," Papers 1501.01504, arXiv.org.
    19. Mark P. Owen & Gordan Žitković, 2009. "Optimal Investment With An Unbounded Random Endowment And Utility‐Based Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 129-159, January.
    20. Tiziano De Angelis & Nikita Merkulov & Jan Palczewski, 2020. "On the value of non-Markovian Dynkin games with partial and asymmetric information," Papers 2007.10643, arXiv.org, revised Feb 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.01528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.