IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.04257.html
   My bibliography  Save this paper

Systemic Optimal Risk Transfer Equilibrium

Author

Listed:
  • Francesca Biagini
  • Alessandro Doldi
  • Jean-Pierre Fouque
  • Marco Frittelli
  • Thilo Meyer-Brandis

Abstract

We propose a novel concept of a Systemic Optimal Risk Transfer Equilibrium (SORTE), which is inspired by the B\"uhlmann's classical notion of an Equilibrium Risk Exchange. We provide sufficient general assumptions that guarantee existence, uniqueness, and Pareto optimality of such a SORTE. In both the B\"uhlmann and the SORTE definition, each agent is behaving rationally by maximizing his/her expected utility given a budget constraint. The two approaches differ by the budget constraints. In B\"uhlmann's definition the vector that assigns the budget constraint is given a priori. On the contrary, in the SORTE approach, the vector that assigns the budget constraint is endogenously determined by solving a systemic utility maximization. SORTE gives priority to the systemic aspects of the problem, in order to optimize the overall systemic performance, rather than to individual rationality.

Suggested Citation

  • Francesca Biagini & Alessandro Doldi & Jean-Pierre Fouque & Marco Frittelli & Thilo Meyer-Brandis, 2019. "Systemic Optimal Risk Transfer Equilibrium," Papers 1907.04257, arXiv.org, revised Jun 2020.
  • Handle: RePEc:arx:papers:1907.04257
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.04257
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weber, Stefan, 2018. "Solvency II, or how to sweep the downside risk under the carpet," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 191-200.
    2. Carlier, G. & Dana, R.-A. & Galichon, A., 2012. "Pareto efficiency for the concave order and multivariate comonotonicity," Journal of Economic Theory, Elsevier, vol. 147(1), pages 207-229.
    3. repec:dau:papers:123456789/8025 is not listed on IDEAS
    4. Rose-Anne Dana & Cuong Le Van, 2010. "Overlapping sets of priors and the existence of efficient allocations and equilibria for risk measures," PSE-Ecole d'économie de Paris (Postprint) halshs-00308530, HAL.
    5. Rose-Anne Dana & Cuong Le Van, 2010. "Overlapping risk adjusted sets of priors and the existence of efficient allocations and equilibria with short-selling," Post-Print halshs-00470670, HAL.
    6. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    7. Rose-Anne Dana & Cuong Le Van, 2007. "Overlapping sets of priors and the existence of efficient allocations and equilibria for risk measures," Documents de travail du Centre d'Economie de la Sorbonne b07068, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. repec:dau:papers:123456789/9713 is not listed on IDEAS
    9. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc0p00hch is not listed on IDEAS
    10. Felix-Benedikt Liebrich & Gregor Svindland, 2018. "Risk sharing for capital requirements with multidimensional security markets," Papers 1809.10015, arXiv.org.
    11. Dana, R.A. & Le Van, C., 2010. "Overlapping risk adjusted sets of priors and the existence of efficient allocations and equilibria with short-selling," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2186-2202, November.
    12. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc0p00hch is not listed on IDEAS
    13. Rose-Anne Dana & Cuong Le Van, 2010. "Overlapping sets of priors and the existence of efficient allocations and equilibria for risk measures," Post-Print halshs-00308530, HAL.
    14. Paul Embrechts & Haiyan Liu & Tiantian Mao & Ruodu Wang, 2017. "Quantile-Based Risk Sharing with Heterogeneous Beliefs," Swiss Finance Institute Research Paper Series 17-65, Swiss Finance Institute, revised Jan 2018.
    15. Guillaume Carlier & Rose-Anne Dana, 2013. "Pareto optima and equilibria when preferences are incompletely known," Post-Print hal-00661903, HAL.
    16. repec:dau:papers:123456789/361 is not listed on IDEAS
    17. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    18. Fabio Bellini & Marco Frittelli, 2002. "On the Existence of Minimax Martingale Measures," Mathematical Finance, Wiley Blackwell, vol. 12(1), pages 1-21, January.
    19. repec:dau:papers:123456789/2342 is not listed on IDEAS
    20. Damir Filipović & Gregor Svindland, 2008. "Optimal capital and risk allocations for law- and cash-invariant convex functions," Finance and Stochastics, Springer, vol. 12(3), pages 423-439, July.
    21. E. Jouini & W. Schachermayer & N. Touzi, 2008. "Optimal Risk Sharing For Law Invariant Monetary Utility Functions," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 269-292, April.
    22. repec:dau:papers:123456789/5045 is not listed on IDEAS
    23. David Heath & Hyejin Ku, 2004. "Pareto Equilibria with coherent measures of risk," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 163-172, April.
    24. Sara Biagini & Marco Frittelli, 2005. "Utility maximization in incomplete markets for unbounded processes," Finance and Stochastics, Springer, vol. 9(4), pages 493-517, October.
    25. Francesca Biagini & Jean‐Pierre Fouque & Marco Frittelli & Thilo Meyer‐Brandis, 2019. "A unified approach to systemic risk measures via acceptance sets," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 329-367, January.
    26. Bühlmann, Hans & Jewell, William S., 1979. "Optimal Risk Exchanges," ASTIN Bulletin, Cambridge University Press, vol. 10(3), pages 243-262, December.
    27. Beatrice Acciaio, 2007. "Optimal risk sharing with non-monotone monetary functionals," Finance and Stochastics, Springer, vol. 11(2), pages 267-289, April.
    28. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    29. Carlier, G. & Dana, R.-A., 2013. "Pareto optima and equilibria when preferences are incompletely known," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1606-1623.
    30. Damir Filipović & Michael Kupper, 2008. "Optimal Capital And Risk Transfers For Group Diversification," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 55-76, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Doldi & Marco Frittelli, 2019. "Multivariate Systemic Optimal Risk Transfer Equilibrium," Papers 1912.12226, arXiv.org, revised Oct 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Doldi & Marco Frittelli, 2019. "Multivariate Systemic Optimal Risk Transfer Equilibrium," Papers 1912.12226, arXiv.org, revised Oct 2021.
    2. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    3. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    4. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    5. Matteo Burzoni & Alessandro Doldi & Enea Monzio Compagnoni, 2022. "Risk Sharing with Deep Neural Networks," Papers 2212.11752, arXiv.org, revised Jun 2023.
    6. Felix-Benedikt Liebrich, 2021. "Risk sharing under heterogeneous beliefs without convexity," Papers 2108.05791, arXiv.org, revised May 2022.
    7. Felix-Benedikt Liebrich, 2024. "Risk sharing under heterogeneous beliefs without convexity," Finance and Stochastics, Springer, vol. 28(4), pages 999-1033, October.
    8. Tim J. Boonen & Fangda Liu & Ruodu Wang, 2021. "Competitive equilibria in a comonotone market," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(4), pages 1217-1255, November.
    9. Dana, R.A. & Le Van, C., 2010. "Overlapping risk adjusted sets of priors and the existence of efficient allocations and equilibria with short-selling," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2186-2202, November.
    10. Kiesel Swen & Rüschendorf Ludger, 2014. "Optimal risk allocation for convex risk functionals in general risk domains," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 335-365, December.
    11. Wang, Ruodu & Wei, Yunran, 2020. "Characterizing optimal allocations in quantile-based risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 288-300.
    12. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.
    13. Dana, R.A. & Le Van, C., 2014. "Efficient allocations and equilibria with short-selling and incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 101-105.
    14. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    15. Rose-Anne Dana & Cuong Le Van, 2014. "Efficient allocations and Equilibria with short-selling and Incomplete Preferences," Post-Print halshs-01020646, HAL.
    16. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Risk sharing, measuring variability, and distortion riskmetrics," Papers 2302.04034, arXiv.org.
    17. Kiesel, Swen & Rüschendorf, Ludger, 2010. "On optimal allocation of risk vectors," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 167-175, October.
    18. Grechuk, Bogdan, 2015. "The center of a convex set and capital allocation," European Journal of Operational Research, Elsevier, vol. 243(2), pages 628-636.
    19. Eisei Ohtaki, 2023. "Optimality in an OLG model with nonsmooth preferences," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(3), pages 611-659, September.
    20. Xia, Zichao & Zou, Zhenfeng & Hu, Taizhong, 2023. "Inf-convolution and optimal allocations for mixed-VaRs," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 156-164.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.04257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.