IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v93y2020icp288-300.html
   My bibliography  Save this article

Characterizing optimal allocations in quantile-based risk sharing

Author

Listed:
  • Wang, Ruodu
  • Wei, Yunran

Abstract

Unlike classic risk sharing problems based on expected utilities or convex risk measures, quantile-based risk sharing problems exhibit two special features. First, quantile-based risk measures (such as the Value-at-Risk) are often not convex, and second, they ignore some part of the distribution of the risk. These features create technical challenges in establishing a full characterization of optimal allocations, a question left unanswered in the literature. In this paper, we address the issues on the existence and the characterization of (Pareto-)optimal allocations in risk sharing problems for the Range-Value-at-Risk family. It turns out that negative dependence, mutual exclusivity in particular, plays an important role in the optimal allocations, in contrast to positive dependence appearing in classic risk sharing problems. As a by-product of our main finding, we obtain some results on the optimization of the Value-at-Risk (VaR) and the Expected Shortfall, as well as a new result on the inf-convolution of VaR and a general distortion risk measure.

Suggested Citation

  • Wang, Ruodu & Wei, Yunran, 2020. "Characterizing optimal allocations in quantile-based risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 288-300.
  • Handle: RePEc:eee:insuma:v:93:y:2020:i:c:p:288-300
    DOI: 10.1016/j.insmatheco.2020.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720300810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michail Anthropelos & Constantinos Kardaras, 2014. "Equilibrium in risk-sharing games," Papers 1412.4208, arXiv.org, revised Jul 2016.
    2. E. Jouini & W. Schachermayer & N. Touzi, 2008. "Optimal Risk Sharing For Law Invariant Monetary Utility Functions," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 269-292, April.
    3. Beatrice Acciaio, 2007. "Optimal risk sharing with non-monotone monetary functionals," Finance and Stochastics, Springer, vol. 11(2), pages 267-289, April.
    4. Michail Anthropelos & Constantinos Kardaras, 2017. "Equilibrium in risk-sharing games," Finance and Stochastics, Springer, vol. 21(3), pages 815-865, July.
    5. Patrick Beissner & Frank Riedel, 2018. "Non-implementability of Arrow–Debreu equilibria by continuous trading under volatility uncertainty," Finance and Stochastics, Springer, vol. 22(3), pages 603-620, July.
    6. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    7. repec:dau:papers:123456789/361 is not listed on IDEAS
    8. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    9. Damir Filipović & Gregor Svindland, 2008. "Optimal capital and risk allocations for law- and cash-invariant convex functions," Finance and Stochastics, Springer, vol. 12(3), pages 423-439, July.
    10. Cai, Jun & Lemieux, Christiane & Liu, Fangda, 2016. "Optimal Reinsurance From The Perspectives Of Both An Insurer And A Reinsurer," ASTIN Bulletin, Cambridge University Press, vol. 46(3), pages 815-849, September.
    11. Paul Embrechts & Haiyan Liu & Tiantian Mao & Ruodu Wang, 2017. "Quantile-Based Risk Sharing with Heterogeneous Beliefs," Swiss Finance Institute Research Paper Series 17-65, Swiss Finance Institute, revised Jan 2018.
    12. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    13. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    14. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    15. Weber, Stefan, 2018. "Solvency II, or how to sweep the downside risk under the carpet," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 191-200.
    16. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    17. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    18. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    19. Ruodu Wang, 2016. "Regulatory arbitrage of risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 337-347, March.
    20. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    21. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayi Li & Zhiyan Cai & Yixuan Liu & Chengxiu Ling, 2022. "Extremal Analysis of Flooding Risk and Its Catastrophe Bond Pricing," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    2. Xia, Zichao & Zou, Zhenfeng & Hu, Taizhong, 2023. "Inf-convolution and optimal allocations for mixed-VaRs," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 156-164.
    3. Khreshna Syuhada & Oki Neswan & Bony Parulian Josaphat, 2022. "Estimating Copula-Based Extension of Tail Value-at-Risk and Its Application in Insurance Claim," Risks, MDPI, vol. 10(6), pages 1-26, May.
    4. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Pairwise counter-monotonicity," Papers 2302.11701, arXiv.org, revised May 2023.
    5. Zou, Zhenfeng & Wu, Qinyu & Xia, Zichao & Hu, Taizhong, 2023. "Adjusted Rényi entropic Value-at-Risk," European Journal of Operational Research, Elsevier, vol. 306(1), pages 255-268.
    6. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2020. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Papers 2003.05797, arXiv.org, revised Mar 2022.
    2. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    3. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    4. Matteo Burzoni & Cosimo Munari & Ruodu Wang, 2020. "Adjusted Expected Shortfall," Papers 2007.08829, arXiv.org, revised Aug 2021.
    5. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    6. Tim J. Boonen & Fangda Liu & Ruodu Wang, 2021. "Competitive equilibria in a comonotone market," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(4), pages 1217-1255, November.
    7. Alessandro Doldi & Marco Frittelli, 2019. "Multivariate Systemic Optimal Risk Transfer Equilibrium," Papers 1912.12226, arXiv.org, revised Oct 2021.
    8. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    9. Felix-Benedikt Liebrich & Gregor Svindland, 2018. "Risk sharing for capital requirements with multidimensional security markets," Papers 1809.10015, arXiv.org.
    10. Felix-Benedikt Liebrich, 2021. "Risk sharing under heterogeneous beliefs without convexity," Papers 2108.05791, arXiv.org, revised May 2022.
    11. Francesca Biagini & Alessandro Doldi & Jean-Pierre Fouque & Marco Frittelli & Thilo Meyer-Brandis, 2019. "Systemic Optimal Risk Transfer Equilibrium," Papers 1907.04257, arXiv.org, revised Jun 2020.
    12. Xia, Zichao & Zou, Zhenfeng & Hu, Taizhong, 2023. "Inf-convolution and optimal allocations for mixed-VaRs," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 156-164.
    13. Xia Han & Qiuqi Wang & Ruodu Wang & Jianming Xia, 2021. "Cash-subadditive risk measures without quasi-convexity," Papers 2110.12198, arXiv.org, revised Mar 2022.
    14. Mao, Tiantian & Hu, Jiuyun & Liu, Haiyan, 2018. "The average risk sharing problem under risk measure and expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 170-179.
    15. Matteo Burzoni & Alessandro Doldi & Enea Monzio Compagnoni, 2022. "Risk Sharing with Deep Neural Networks," Papers 2212.11752, arXiv.org, revised Jun 2023.
    16. Felix-Benedikt Liebrich & Gregor Svindland, 2019. "Risk sharing for capital requirements with multidimensional security markets," Finance and Stochastics, Springer, vol. 23(4), pages 925-973, October.
    17. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    18. Pazdera, Jaroslav & Schumacher, Johannes M. & Werker, Bas J.M., 2017. "The composite iteration algorithm for finding efficient and financially fair risk-sharing rules," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 122-133.
    19. Svindland Gregor, 2009. "Subgradients of law-invariant convex risk measures on L," Statistics & Risk Modeling, De Gruyter, vol. 27(2), pages 169-199, December.
    20. Zou, Zhenfeng & Wu, Qinyu & Xia, Zichao & Hu, Taizhong, 2023. "Adjusted Rényi entropic Value-at-Risk," European Journal of Operational Research, Elsevier, vol. 306(1), pages 255-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:93:y:2020:i:c:p:288-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.