IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.03546.html
   My bibliography  Save this paper

Classifying Financial Markets up to Isomorphism

Author

Listed:
  • John Armstrong

Abstract

Two markets should be considered isomorphic if they are financially indistinguishable. We define a notion of isomorphism for financial markets in both discrete and continuous time. We then seek to identify the distinct isomorphism classes, that is to classify markets. We classify complete one-period markets. We define an invariant of continuous time complete markets which we call the absolute market price of risk. This invariant plays a role analogous to the curvature in Riemannian geometry. We classify markets when the absolute market price of risk is deterministic. We show that, in general, markets with non-trivial automorphism groups admit mutual fund theorems. We prove a number of such theorems.

Suggested Citation

  • John Armstrong, 2018. "Classifying Financial Markets up to Isomorphism," Papers 1810.03546, arXiv.org, revised Jul 2020.
  • Handle: RePEc:arx:papers:1810.03546
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.03546
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    2. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    4. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    5. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    6. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    7. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigrid Källblad, 2017. "Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals," Finance and Stochastics, Springer, vol. 21(2), pages 397-425, April.
    2. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    3. Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.
    4. Rania HENTATI & Jean-Luc PRIGENT, 2010. "Structured Portfolio Analysis under SharpeOmega Ratio," EcoMod2010 259600073, EcoMod.
    5. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    6. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    7. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    8. Huhtala, Heli, 2008. "Along but beyond mean-variance: Utility maximization in a semimartingale model," Bank of Finland Research Discussion Papers 5/2008, Bank of Finland.
    9. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    10. Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.
    11. David B. BROWN & Enrico G. DE GIORGI & Melvyn SIM, 2009. "A Satiscing Alternative to Prospect Theory," Swiss Finance Institute Research Paper Series 09-19, Swiss Finance Institute.
    12. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    13. Shi, Yun & Cui, Xiangyu & Li, Duan, 2015. "Discrete-time behavioral portfolio selection under cumulative prospect theory," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 283-302.
    14. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    15. Xun Li & Xiang Yu & Qinyi Zhang, 2021. "Optimal consumption with loss aversion and reference to past spending maximum," Papers 2108.02648, arXiv.org, revised Mar 2024.
    16. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    17. René Ferland & François Watier, 2010. "Mean–variance efficiency with extended CIR interest rates," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(1), pages 71-84, January.
    18. MacLean, Leonard C. & Zhao, Yonggan & Ziemba, William T., 2016. "Optimal capital growth with convex shortfall penalties," LSE Research Online Documents on Economics 65486, London School of Economics and Political Science, LSE Library.
    19. Qizhu Liang & Jie Xiong, 2017. "Stochastic maximum principle under probability distortion," Papers 1710.11432, arXiv.org, revised Aug 2018.
    20. Castaneda, Pablo, 2006. "Long Term Risk Assessment in a Defined Contribution Pension System," MPRA Paper 3347, University Library of Munich, Germany, revised 30 Apr 2007.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.03546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.