IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.02872.html
   My bibliography  Save this paper

The nested structural organization of the worldwide trade multi-layer network

Author

Listed:
  • Luiz G. A. Alves
  • Giuseppe Mangioni
  • Isabella Cingolani
  • Francisco A. Rodrigues
  • Pietro Panzarasa
  • Yamir Moreno

Abstract

Nestedness has traditionally been used to detect assembly patterns in meta-communities and networks of interacting species. Attempts have also been made to uncover nested structures in international trade, typically represented as bipartite networks in which connections can be established between countries (exporters or importers) and industries. A bipartite representation of trade, however, inevitably neglects transactions between industries. To fully capture the organization of the global value chain, we draw on the World Input-Output Database and construct a multi-layer network in which the nodes are the countries, the layers are the industries, and links can be established from sellers to buyers within and across industries. We define the buyers' and sellers' participation matrices in which the rows are the countries and the columns are all possible pairs of industries, and then compute nestedness based on buyers' and sellers' involvement in transactions between and within industries. Drawing on appropriate null models that preserve the countries' or layers' degree distributions in the original multi-layer network, we uncover variations of country- and transaction-based nestedness over time, and identify the countries and industries that most contributed to nestedness. We discuss the implications of our findings for the study of the international production network and other real-world systems.

Suggested Citation

  • Luiz G. A. Alves & Giuseppe Mangioni & Isabella Cingolani & Francisco A. Rodrigues & Pietro Panzarasa & Yamir Moreno, 2018. "The nested structural organization of the worldwide trade multi-layer network," Papers 1803.02872, arXiv.org, revised Sep 2019.
  • Handle: RePEc:arx:papers:1803.02872
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.02872
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    2. , D. & Tessone, Claudio J. & ,, 2014. "Nestedness in networks: A theoretical model and some applications," Theoretical Economics, Econometric Society, vol. 9(3), September.
    3. Matthieu Cristelli & Andrea Gabrielli & Andrea Tacchella & Guido Caldarelli & Luciano Pietronero, 2013. "Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-20, August.
    4. Serguei Saavedra & Daniel B. Stouffer & Brian Uzzi & Jordi Bascompte, 2011. "Strong contributors to network persistence are the most vulnerable to extinction," Nature, Nature, vol. 478(7368), pages 233-235, October.
    5. Rossana Mastrandrea & Tiziano Squartini & Giorgio Fagiolo & Diego Garlaschelli, 2014. "Reconstructing the world trade multiplex: the role of intensive and extensive biases," Papers 1402.4171, arXiv.org, revised Nov 2014.
    6. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    7. Serguei Saavedra & Felix Reed-Tsochas & Brian Uzzi, 2009. "A simple model of bipartite cooperation for ecological and organizational networks," Nature, Nature, vol. 457(7228), pages 463-466, January.
    8. C. A. Hidalgo & B. Klinger & A. -L. Barabasi & R. Hausmann, 2007. "The Product Space Conditions the Development of Nations," Papers 0708.2090, arXiv.org.
    9. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Randomizing bipartite networks: the case of the World Trade Web," Papers 1503.05098, arXiv.org, revised Jun 2015.
    10. Phillip P. A. Staniczenko & Jason C. Kopp & Stefano Allesina, 2013. "The ghost of nestedness in ecological networks," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuo-Ming Ren & An Zeng & Yi-Cheng Zhang, 2020. "Bridging nestedness and economic complexity in multilayer world trade networks," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-8, December.
    2. Ren, Zhuo-Ming & Zhao, Li & Du, Wen-Li & Weng, Tong-Feng & Liu, Chuang & Kong, Yi-Xiu & Zhang, Yi-Cheng, 2024. "Tunable resource allocation dynamics for interpreting economic complexity," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Adelaide Baronchelli & Teodora Erika Uberti, 2021. "International Economic Integration: Comparing Exports and FDI Networks in the New Millennium," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(11), pages 1-30, November.
    4. Olivera Kostoska & Sonja Mitikj & Petar Jovanovski & Ljupco Kocarev, 2020. "Core-periphery structure in sectoral international trade networks: A new approach to an old theory," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-24, April.
    5. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna, 2023. "Clustering coefficients as measures of the complex interactions in a directed weighted multilayer network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    6. Marco Grassia & Giuseppe Mangioni & Stefano Schiavo & Silvio Traverso, 2020. "(Unintended) Consequences of export restrictions on medical goods during the Covid-19 pandemic," Papers 2007.11941, arXiv.org.
    7. Diego Kozlowski & Viktoriya Semeshenko & Andrea Molinari, 2021. "Latent Dirichlet allocation model for world trade analysis," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Alexandre & Felipe Jordão Xavier & Thiago Christiano Silva & Francisco A. Rodrigues, 2022. "Nestedness in the Brazilian Financial System," Working Papers Series 566, Central Bank of Brazil, Research Department.
    2. Ren, Zhuo-Ming & Zhao, Li & Du, Wen-Li & Weng, Tong-Feng & Liu, Chuang & Kong, Yi-Xiu & Zhang, Yi-Cheng, 2024. "Tunable resource allocation dynamics for interpreting economic complexity," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Zhuo-Ming Ren & An Zeng & Yi-Cheng Zhang, 2020. "Bridging nestedness and economic complexity in multilayer world trade networks," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-8, December.
    4. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Detecting early signs of the 2007-2008 crisis in the world trade," Papers 1508.03533, arXiv.org, revised Jul 2016.
    5. Mika J. Straka & Guido Caldarelli & Tiziano Squartini & Fabio Saracco, 2017. "From Ecology to Finance (and Back?): Recent Advancements in the Analysis of Bipartite Networks," Papers 1710.10143, arXiv.org.
    6. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna, 2023. "Clustering coefficients as measures of the complex interactions in a directed weighted multilayer network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Gomez, Charles J. & Lieberman, Dahlia & Mäkinen, Elina I., 2024. "Hedgehogs, foxes, and global science ecosystems: Decoding universities' research profiles across fields with nested ecological networks," Research Policy, Elsevier, vol. 53(7).
    8. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    9. Balland, Pierre-Alexandre & Broekel, Tom & Diodato, Dario & Giuliani, Elisa & Hausmann, Ricardo & O'Clery, Neave & Rigby, David, 2022. "Reprint of The new paradigm of economic complexity," Research Policy, Elsevier, vol. 51(8).
    10. Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2016. "The Impact of Services on Economic Complexity: Service Sophistication as Route for Economic Growth," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-29, August.
    11. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    12. Victor Boussange & Didier Sornette & Heike Lischke & Loic Pellissier, 2023. "Processes analogous to ecological interactions and dispersal shape the dynamics of economic activities," Papers 2301.09486, arXiv.org.
    13. Antonis Adam & Antonios Garas & Marina-Selini Katsaiti & Athanasios Lapatinas, 2023. "Economic complexity and jobs: an empirical analysis," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(1), pages 25-52, January.
    14. Sèna Kimm Gnangnon, 2023. "Do unilateral trade preferences help reduce poverty in beneficiary countries?," International Journal of Economic Policy Studies, Springer, vol. 17(1), pages 249-288, February.
    15. Francesco de Cunzo & Alberto Petri & Andrea Zaccaria & Angelica Sbardella, 2022. "The trickle down from environmental innovation to productive complexity," Papers 2206.07537, arXiv.org.
    16. Tacchella, Andrea & Zaccaria, Andrea & Miccheli, Marco & Pietronero, Luciano, 2023. "Relatedness in the era of machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    17. Andrea Tacchella & Andrea Zaccaria & Marco Miccheli & Luciano Pietronero, 2021. "Relatedness in the Era of Machine Learning," Papers 2103.06017, arXiv.org.
    18. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Luciano Pietronero, 2015. "From Innovation to Diversification: A Simple Competitive Model," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    19. Antonios Garas & Sophie Guthmuller & Athanasios Lapatinas, 2021. "The development of nations conditions the disease space," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-35, January.
    20. Saurabh Mishra & Robert Koopman & Giuditta De-Prato & Anand Rao & Israel Osorio-Rodarte & Julie Kim & Nikola Spatafora & Keith Strier & Andrea Zaccaria, 2021. "AI Specialization for Pathways of Economic Diversification," Papers 2103.11042, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.02872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.