IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1801.02719.html
   My bibliography  Save this paper

Dirichlet Forms and Finite Element Methods for the SABR Model

Author

Listed:
  • Blanka Horvath
  • Oleg Reichmann

Abstract

We propose a deterministic numerical method for pricing vanilla options under the SABR stochastic volatility model, based on a finite element discretization of the Kolmogorov pricing equations via non-symmetric Dirichlet forms. Our pricing method is valid under mild assumptions on parameter configurations of the process both in moderate interest rate environments and in near-zero interest rate regimes such as the currently prevalent ones. The parabolic Kolmogorov pricing equations for the SABR model are degenerate at the origin, yielding non-standard partial differential equations, for which conventional pricing methods ---designed for non-degenerate parabolic equations--- potentially break down. We derive here the appropriate analytic setup to handle the degeneracy of the model at the origin. That is, we construct an evolution triple of suitably chosen Sobolev spaces with singular weights, consisting of the domain of the SABR-Dirichlet form, its dual space, and the pivotal Hilbert space. In particular, we show well-posedness of the variational formulation of the SABR-pricing equations for vanilla and barrier options on this triple. Furthermore, we present a finite element discretization scheme based on a (weighted) multiresolution wavelet approximation in space and a $\theta$-scheme in time and provide an error analysis for this discretization.

Suggested Citation

  • Blanka Horvath & Oleg Reichmann, 2018. "Dirichlet Forms and Finite Element Methods for the SABR Model," Papers 1801.02719, arXiv.org.
  • Handle: RePEc:arx:papers:1801.02719
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1801.02719
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Archil Gulisashvili & Blanka Horvath & Antoine Jacquier, 2015. "Mass at zero in the uncorrelated SABR model and implied volatility asymptotics," Papers 1502.03254, arXiv.org, revised Nov 2016.
    2. Martin Forde & Andrey Pogudin, 2013. "The Large-Maturity Smile For The Sabr And Cev-Heston Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-20.
    3. David Hobson, 2010. "Comparison results for stochastic volatility models via coupling," Finance and Stochastics, Springer, vol. 14(1), pages 129-152, January.
    4. Archil Gulisashvili, 2015. "Left-Wing Asymptotics Of The Implied Volatility In The Presence Of Atoms," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-25.
    5. Bin Chen & Cornelis W. Oosterlee & Hans Van Der Weide, 2012. "A Low-Bias Simulation Scheme For The Sabr Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-37.
    6. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893.
    7. Christian Bayer & Jim Gatheral & Morten Karlsmark, 2013. "Fast Ninomiya--Victoir calibration of the double-mean-reverting model," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1813-1829, November.
    8. Lindsay, A.E. & Brecher, D.R., 2012. "Simulation of the CEV process and the local martingale property," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 868-878.
    9. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    10. Philipp Doersek & Josef Teichmann, 2010. "A Semigroup Point Of View On Splitting Schemes For Stochastic (Partial) Differential Equations," Papers 1011.2651, arXiv.org.
    11. Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
    12. Leif Doering & Blanka Horvath & Josef Teichmann, 2017. "Functional Analytic (Ir-)Regularity Properties of SABR-type Processes," Papers 1701.02015, arXiv.org.
    13. Jean-Francois Chassagneux & Antoine Jacquier & Ivo Mihaylov, 2014. "An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients," Papers 1405.3561, arXiv.org, revised Apr 2016.
    14. Griselda Deelstra & Freddy Delbaen, 1998. "Convergence of discretised stochastic interest rate: processes with stochastic drift term," ULB Institutional Repository 2013/7584, ULB -- Universite Libre de Bruxelles.
    15. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    16. Leif Döring & Blanka Horvath & Josef Teichmann, 2017. "Functional Analytic (Ir-)Regularity Properties Of Sabr-Type Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-48, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    2. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2019. "Deep Learning Volatility," Papers 1901.09647, arXiv.org, revised Aug 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leif Döring & Blanka Horvath & Josef Teichmann, 2017. "Functional Analytic (Ir-)Regularity Properties Of Sabr-Type Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-48, May.
    2. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    3. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    4. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    5. Kathrin Glau, 2016. "A Feynman–Kac-type formula for Lévy processes with discontinuous killing rates," Finance and Stochastics, Springer, vol. 20(4), pages 1021-1059, October.
    6. Ewald, Christian-Oliver & Menkens, Olaf & Hung Marten Ting, Sai, 2013. "Asian and Australian options: A common perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1001-1018.
    7. Maximilian Ga{ss} & Kathrin Glau, 2016. "A Flexible Galerkin Scheme for Option Pricing in L\'evy Models," Papers 1603.08216, arXiv.org.
    8. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    9. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    10. Andrei Cozma & Christoph Reisinger, 2017. "Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process," Papers 1704.07321, arXiv.org, revised Oct 2018.
    11. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2013.
    12. Vinicius V. L. Albani & Jorge P. Zubelli, 0. "A splitting strategy for the calibration of jump-diffusion models," Finance and Stochastics, Springer, vol. 0, pages 1-46.
    13. Jakub Drahokoupil, 2020. "Variance Gamma process in the option pricing model," FFA Working Papers 3.002, Prague University of Economics and Business, revised 31 Jan 2021.
    14. Chantal Labb'e & Bruno R'emillard & Jean-Franc{c}ois Renaud, 2010. "A simple discretization scheme for nonnegative diffusion processes, with applications to option pricing," Papers 1011.3247, arXiv.org.
    15. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta hedging in a jump-diffusion model," Papers 1910.08946, arXiv.org.
    16. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    17. Vinicius V. L. Albani & Jorge P. Zubelli, 2020. "A splitting strategy for the calibration of jump-diffusion models," Finance and Stochastics, Springer, vol. 24(3), pages 677-722, July.
    18. Ludovic Mathys, 2019. "On Extensions of the Barone-Adesi & Whaley Method to Price American-Type Options," Papers 1912.00454, arXiv.org.
    19. S. T. Tse & Justin W. L. Wan, 2013. "Low-bias simulation scheme for the Heston model by Inverse Gaussian approximation," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 919-937, May.
    20. Mario Hefter & Arnulf Jentzen, 2019. "On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes," Finance and Stochastics, Springer, vol. 23(1), pages 139-172, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1801.02719. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.