IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.08883.html
   My bibliography  Save this paper

A Direct Solution Method for Pricing Options in Regime-switching Models

Author

Listed:
  • Masahiko Egami
  • Rusudan Kevkhishvili

Abstract

Pricing financial or real options with arbitrary payoffs in regime-switching models is an important problem in finance. Mathematically, it is to solve, under certain standard assumptions, a general form of optimal stopping problems in regime-switching models. In this article, we reduce an optimal stopping problem with an arbitrary value function in a two-regime environment to a pair of optimal stopping problems without regime switching. We then propose a method for finding optimal stopping rules using the techniques available for non-switching problems. In contrast to other methods, our systematic solution procedure is more direct since we first obtain the explicit form of the value functions. In the end, we discuss an option pricing problem which may not be dealt with by the conventional methods, demonstrating the simplicity of our approach.

Suggested Citation

  • Masahiko Egami & Rusudan Kevkhishvili, 2017. "A Direct Solution Method for Pricing Options in Regime-switching Models," Papers 1711.08883, arXiv.org, revised Sep 2018.
  • Handle: RePEc:arx:papers:1711.08883
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.08883
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Broadie, Mark & Detemple, Jerome, 1995. "American Capped Call Options on Dividend-Paying Assets," The Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 161-191.
    2. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leunglung Chan & Song-Ping Zhu, 2021. "An Analytic Approach for Pricing American Options with Regime Switching," JRFM, MDPI, vol. 14(5), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    2. R. Stockbridge, 2014. "Discussion of dynamic programming and linear programming approaches to stochastic control and optimal stopping in continuous time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(1), pages 137-162, January.
    3. Erhan Bayraktar & Masahiko Egami, 2008. "An Analysis of Monotone Follower Problems for Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 336-350, May.
    4. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078.
    5. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    6. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    7. Liangchen Li & Michael Ludkovski, 2018. "Stochastic Switching Games," Papers 1807.03893, arXiv.org.
    8. Sabri Boubaker & Zhenya Liu & Yaosong Zhan, 2022. "Risk management for crude oil futures: an optimal stopping-timing approach," Annals of Operations Research, Springer, vol. 313(1), pages 9-27, June.
    9. Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
    10. Bolton, Patrick & Wang, Neng & Yang, Jinqiang, 2019. "Investment under uncertainty with financial constraints," Journal of Economic Theory, Elsevier, vol. 184(C).
    11. S. C. P. Yam & S. P. Yung & W. Zhou, 2014. "Game Call Options Revisited," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 173-206, January.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "Nash equilibria of threshold type for two-player nonzero-sum games of stopping," Center for Mathematical Economics Working Papers 563, Center for Mathematical Economics, Bielefeld University.
    14. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    15. Erhan Bayraktar & Masahiko Egami, 2010. "A unified treatment of dividend payment problems under fixed cost and implementation delays," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 325-351, April.
    16. Hobson, David, 2021. "The shape of the value function under Poisson optimal stopping," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 229-246.
    17. Tiziano De Angelis & Giorgio Ferrari & John Moriarty, 2019. "A Solvable Two-Dimensional Degenerate Singular Stochastic Control Problem with Nonconvex Costs," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 512-531, May.
    18. Katia Colaneri & Tiziano De Angelis, 2019. "A class of recursive optimal stopping problems with applications to stock trading," Papers 1905.02650, arXiv.org, revised Jun 2021.
    19. Liu, Zhenya & Lu, Shanglin & Wang, Shixuan, 2021. "Asymmetry, tail risk and time series momentum," International Review of Financial Analysis, Elsevier, vol. 78(C).
    20. Alex S. L. Tse & Harry Zheng, 2023. "Speculative trading, prospect theory and transaction costs," Finance and Stochastics, Springer, vol. 27(1), pages 49-96, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.08883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.