IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v77y2014i1p137-162.html
   My bibliography  Save this article

Discussion of dynamic programming and linear programming approaches to stochastic control and optimal stopping in continuous time

Author

Listed:
  • R. Stockbridge

Abstract

This paper seeks to highlight two approaches to the solution of stochastic control and optimal stopping problems in continuous time. Each approach transforms the stochastic problem into a deterministic problem. Dynamic programming is a well-established technique that obtains a partial/ordinary differential equation, variational or quasi-variational inequality depending on the type of problem; the solution provides the value of the problem as a function of the initial position (the value function). The other method recasts the problems as linear programs over a space of feasible measures. Both approaches use Dynkin’s formula in essential but different ways. The aim of this paper is to present the main ideas underlying these approaches with only passing attention paid to the important and necessary technical details. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • R. Stockbridge, 2014. "Discussion of dynamic programming and linear programming approaches to stochastic control and optimal stopping in continuous time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(1), pages 137-162, January.
  • Handle: RePEc:spr:metrik:v:77:y:2014:i:1:p:137-162
    DOI: 10.1007/s00184-013-0476-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-013-0476-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-013-0476-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis H. R. Alvarez, 2001. "Reward functionals, salvage values, and optimal stopping," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(2), pages 315-337, December.
    2. Broadie, Mark & Detemple, Jerome, 1995. "American Capped Call Options on Dividend-Paying Assets," Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 161-191.
    3. P. Kaczmarek & S. Kent & G. Rus & R. Stockbridge & B. Wade, 2007. "Numerical solution of a long-term average control problem for singular stochastic processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 451-473, December.
    4. L. Alili & A. E. Kyprianou, 2005. "Some remarks on first passage of Levy processes, the American put and pasting principles," Papers math/0508487, arXiv.org.
    5. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    2. Jukka Lempa, 2008. "On infinite horizon optimal stopping of general random walk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 257-268, April.
    3. H. Dharma Kwon & Steven A. Lippman, 2011. "Acquisition of Project-Specific Assets with Bayesian Updating," Operations Research, INFORMS, vol. 59(5), pages 1119-1130, October.
    4. Pui Chan Lon & Mihail Zervos, 2011. "A Model for Optimally Advertising and Launching a Product," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 363-376, May.
    5. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    6. Luis H. R. Alvarez & Teppo A. Rakkolainen, 2006. "A Class of Solvable Optimal Stopping Problems of Spectrally Negative Jump Diffusions," Discussion Papers 9, Aboa Centre for Economics.
    7. Masahiko Egami & Rusudan Kevkhishvili, 2017. "A Direct Solution Method for Pricing Options in Regime-switching Models," Papers 1711.08883, arXiv.org, revised Sep 2018.
    8. Jukka Lempa, 2008. "The Optimal Stopping Problem of Dupuis and Wang: A Generalization," Discussion Papers 36, Aboa Centre for Economics.
    9. Jonas Al-Hadad & Zbigniew Palmowski, 2020. "Perpetual American options with asset-dependent discounting," Papers 2007.09419, arXiv.org, revised Jan 2021.
    10. Pavel V. Gapeev, 2006. "Perpetual Barrier Options in Jump-Diffusion Models," SFB 649 Discussion Papers SFB649DP2006-058, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    11. Gapeev Pavel V. & Rodosthenous Neofytos, 2013. "Perpetual American options in a diffusion model with piecewise-linear coefficients," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 1-21, March.
    12. H. Dharma Kwon & Steven A. Lippman, 2019. "Acquisition of Project-Specific Assets with Bayesian Updating," Papers 1901.04120, arXiv.org.
    13. Shackleton, Mark B. & Sødal, Sigbjørn, 2010. "Harvesting and recovery decisions under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(12), pages 2533-2546, December.
    14. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    15. Erhan Bayraktar & Masahiko Egami, 2008. "An Analysis of Monotone Follower Problems for Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 336-350, May.
    16. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    17. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    18. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    19. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    20. Liangchen Li & Michael Ludkovski, 2018. "Stochastic Switching Games," Papers 1807.03893, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:77:y:2014:i:1:p:137-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.