IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1608.07863.html
   My bibliography  Save this paper

Short-Time Expansions for Call Options on Leveraged ETFs Under Exponential L\'evy models With Local Volatility

Author

Listed:
  • Jos'e E. Figueroa-L'opez
  • Ruoting Gong
  • Matthew Lorig

Abstract

In this article, we consider the small-time asymptotics of options on a \emph{Leveraged Exchange-Traded Fund} (LETF) when the underlying Exchange Traded Fund (ETF) exhibits both local volatility and jumps of either finite or infinite activity. Our main results are closed-form expressions for the leading order terms of off-the-money European call and put LETF option prices, near expiration, with explicit error bounds. We show that the price of an out-of-the-money European call on a LETF with positive (negative) leverage is asymptotically equivalent, in short-time, to the price of an out-of-the-money European call (put) on the underlying ETF, but with modified spot and strike prices. Similar relationships hold for other off-the-money European options. In particular, our results suggest a method to hedge off-the-money LETF options near expiration using options on the underlying ETF. Finally, a second order expansion for the corresponding implied volatility is also derived and illustrated numerically.

Suggested Citation

  • Jos'e E. Figueroa-L'opez & Ruoting Gong & Matthew Lorig, 2016. "Short-Time Expansions for Call Options on Leveraged ETFs Under Exponential L\'evy models With Local Volatility," Papers 1608.07863, arXiv.org, revised Jun 2017.
  • Handle: RePEc:arx:papers:1608.07863
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1608.07863
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    2. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    3. Young Shin Kim, 2018. "First Passage Time for Tempered Stable Process and Its Application to Perpetual American Option and Barrier Option Pricing," Papers 1801.09362, arXiv.org.
    4. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    5. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    6. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    7. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    8. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    9. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    10. José Azevedo‐Pereira & Gualter Couto & Cláudia Nunes, 2010. "Optimal timing of relocation," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 6(2), pages 143-163, April.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Svetlana Boyarchenko & Sergei Levendorskii, 2004. "Universal bad news principle and pricing of options on dividend-paying assets," Papers cond-mat/0404108, arXiv.org.
    13. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    14. repec:eid:wpaper:06/10 is not listed on IDEAS
    15. Eric Jacquier & Cedric Okou, 2013. "Disentangling Continuous Volatility from Jumps in Long-Run Risk-Return Relationships," CIRANO Working Papers 2013s-14, CIRANO.
    16. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    17. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    18. Kazutoshi Yamazaki, 2017. "Inventory Control for Spectrally Positive Lévy Demand Processes," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 212-237, January.
    19. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    20. A. Christian Silva & Ju-Yi Yen, 2010. "Stochastic resonance and the trade arrival rate of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 461-466.
    21. Lorenzo Torricelli, 2012. "Valuation of asset and volatility derivatives using decoupled time-changed L\'evy processes," Papers 1210.5479, arXiv.org, revised Jan 2015.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1608.07863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.