Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-016-9563-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
- Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
- Merton, Robert C., 1976.
"Option pricing when underlying stock returns are discontinuous,"
Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
- Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
- Raymond Brummelhuis & Ron T. L. Chan, 2014. "A Radial Basis Function Scheme for Option Pricing in Exponential Lévy Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(3), pages 238-269, July.
- Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yusho Kagraoka, 2020. "The Fractional Step Method versus the Radial Basis Functions for Option Pricing with Correlated Stochastic Processes," IJFS, MDPI, vol. 8(4), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.
- Bilel Jarraya & Abdelfettah Bouri, 2013.
"A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry,"
International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
- Jarraya, Bilel & Bouri, Abdelfettah, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," MPRA Paper 53534, University Library of Munich, Germany, revised 2013.
- Anna Maria Gambaro & Nicola Secomandi, 2021. "A Discussion of Non‐Gaussian Price Processes for Energy and Commodity Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 47-67, January.
- Karel in 't Hout & Jari Toivanen, 2015. "Application of Operator Splitting Methods in Finance," Papers 1504.01022, arXiv.org.
- Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
- Karel in 't Hout & Pieter Lamotte, 2022. "Efficient numerical valuation of European options under the two-asset Kou jump-diffusion model," Papers 2207.10060, arXiv.org, revised May 2023.
- Maximilian Ga{ss} & Kathrin Glau, 2016. "A Flexible Galerkin Scheme for Option Pricing in L\'evy Models," Papers 1603.08216, arXiv.org.
- Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
- Erhan Bayraktar & Hao Xing, 2009. "Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 505-525, December.
- Xu, Guoping & Zheng, Harry, 2010. "Basket options valuation for a local volatility jump-diffusion model with the asymptotic expansion method," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 415-422, December.
- Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
- Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
- Shirzadi, Mohammad & Rostami, Mohammadreza & Dehghan, Mehdi & Li, Xiaolin, 2023. "American options pricing under regime-switching jump-diffusion models with meshfree finite point method," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Xun Li & Ping Lin & Xue-Cheng Tai & Jinghui Zhou, 2015. "Pricing Two-asset Options under Exponential L\'evy Model Using a Finite Element Method," Papers 1511.04950, arXiv.org.
- Maurya, Vikas & Singh, Ankit & Yadav, Vivek S. & Rajpoot, Manoj K., 2024. "Efficient pricing of options in jump–diffusion models: Novel implicit–explicit methods for numerical valuation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 202-225.
- Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.
- Kuldip Singh Patel & Mani Mehra, 2018. "Compact finite difference method for pricing European and American options under jump-diffusion models," Papers 1804.09043, arXiv.org.
- Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, February.
- Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
More about this item
Keywords
Adaptive method; Lévy processes; Option pricing; Parabolic partial integro-differential equations; Singularity; Radial basis function; The Merton jump-diffusions model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:47:y:2016:i:4:d:10.1007_s10614-016-9563-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.