IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1512.03896.html
   My bibliography  Save this paper

A generalized intensity based framework for single-name credit risk

Author

Listed:
  • Frank Gehmlich
  • Thorsten Schmidt

Abstract

The intensity of a default time is obtained by assuming that the default indicator process has an absolutely continuous compensator. Here we drop the assumption of absolute continuity with respect to the Lebesgue measure and only assume that the compensator is absolutely continuous with respect to a general $\sigma$-finite measure. This allows for example to incorporate the Merton-model in the generalized intensity based framework. An extension of the Black-Cox model is also considered. We propose a class of generalized Merton models and study absence of arbitrage by a suitable modification of the forward rate approach of Heath-Jarrow-Morton (1992). Finally, we study affine term structure models which fit in this class. They exhibit stochastic discontinuities in contrast to the affine models previously studied in the literature.

Suggested Citation

  • Frank Gehmlich & Thorsten Schmidt, 2015. "A generalized intensity based framework for single-name credit risk," Papers 1512.03896, arXiv.org.
  • Handle: RePEc:arx:papers:1512.03896
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1512.03896
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    2. Xin Guo & Yan Zeng, 2008. "Intensity process and compensator: A new filtration expansion approach and the Jeulin--Yor theorem," Papers 0801.3191, arXiv.org.
    3. Alain BÉlanger & Steven E. Shreve & Dennis Wong, 2004. "A General Framework For Pricing Credit Risk," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 317-350, July.
    4. Frank Gehmlich & Thorsten Schmidt, 2014. "Dynamic Defaultable Term Structure Modelling beyond the Intensity Paradigm," Papers 1411.4851, arXiv.org, revised Jul 2015.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Fontana & Thorsten Schmidt, 2016. "General dynamic term structures under default risk," Papers 1603.03198, arXiv.org, revised Nov 2017.
    2. Xin Guo & Robert A. Jarrow & Yan Zeng, 2009. "Credit Risk Models with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 320-332, May.
    3. Martin Keller-Ressel & Thorsten Schmidt & Robert Wardenga, 2018. "Affine processes beyond stochastic continuity," Papers 1804.07556, arXiv.org, revised Dec 2018.
    4. Fontana, Claudio & Schmidt, Thorsten, 2018. "General dynamic term structures under default risk," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3353-3386.
    5. Caroline Hillairet & Ying Jiao, 2010. "Information Asymmetry in Pricing of Credit Derivatives," Working Papers hal-00457456, HAL.
    6. Tolulope Fadina & Thorsten Schmidt, 2019. "Default Ambiguity," Risks, MDPI, vol. 7(2), pages 1-17, June.
    7. Okhrati, Ramin & Balbás, Alejandro & Garrido, José, 2014. "Hedging of defaultable claims in a structural model using a locally risk-minimizing approach," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2868-2891.
    8. Agostino Capponi & Stefano Pagliarani & Tiziano Vargiolu, 2014. "Pricing vulnerable claims in a Lévy-driven model," Finance and Stochastics, Springer, vol. 18(4), pages 755-789, October.
    9. Xin Guo & Robert A. Jarrow & Yan Zeng, 2009. "Modeling The Recovery Rate In A Reduced Form Model," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 73-97, January.
    10. Frank Gehmlich & Thorsten Schmidt, 2014. "Dynamic Defaultable Term Structure Modelling beyond the Intensity Paradigm," Papers 1411.4851, arXiv.org, revised Jul 2015.
    11. Caroline Hillairet & Ying Jiao, 2010. "Information Asymmetry in Pricing of Credit Derivatives," Papers 1002.3256, arXiv.org.
    12. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2020. "A martingale representation theorem and valuation of defaultable securities," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1527-1564, October.
    13. Ramin Okhrati & Alejandro Balb'as & Jos'e Garrido, 2015. "Hedging of defaultable claims in a structural model using a locally risk-minimizing approach," Papers 1505.03501, arXiv.org.
    14. Sandrine Gumbel & Thorsten Schmidt, 2021. "Defaultable term structures driven by semimartingales," Papers 2103.01577, arXiv.org, revised Aug 2021.
    15. Gady Jacoby & Chuan Liao & Jonathan A. Batten, 2007. "A Pure Test for the Elasticity of Yield Spreads," The Institute for International Integration Studies Discussion Paper Series iiisdp195, IIIS.
    16. ilya, gikhman, 2006. "Fixed-income instrument pricing," MPRA Paper 1449, University Library of Munich, Germany.
    17. Gordian Rättich & Kim Clark & Evi Hartmann, 2011. "Performance measurement and antecedents of early internationalizing firms: A systematic assessment," Working Papers 0031, College of Business, University of Texas at San Antonio.
    18. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    19. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    20. Neus, Werner, 2014. "Eigenkapitalnormen, Boni und Risikoanreize in Banken," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(2), pages 92-107.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1512.03896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.