IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.3347.html
   My bibliography  Save this paper

Order Estimates for the Exact Lugannani-Rice Expansion

Author

Listed:
  • Takashi Kato
  • Jun Sekine
  • Kenichi Yoshikawa

Abstract

The Lugannani-Rice formula is a saddlepoint approximation method for estimating the tail probability distribution function, which was originally studied for the sum of independent identically distributed random variables. Because of its tractability, the formula is now widely used in practical financial engineering as an approximation formula for the distribution of a (single) random variable. In this paper, the Lugannani-Rice approximation formula is derived for a general, parametrized sequence of random variables and the order estimates of the approximation are given.

Suggested Citation

  • Takashi Kato & Jun Sekine & Kenichi Yoshikawa, 2013. "Order Estimates for the Exact Lugannani-Rice Expansion," Papers 1310.3347, arXiv.org, revised Jun 2014.
  • Handle: RePEc:arx:papers:1310.3347
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.3347
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
    2. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    3. Martino Grasselli & Claudio Tebaldi, 2008. "Solvable Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 135-153, January.
    4. Xiong, Jian & Wong, Augustine & Salopek, Donna, 2005. "Saddlepoint approximations to option price in a general equilibrium model," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 361-369, March.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. del Baño Rollin, Sebastian & Ferreiro-Castilla, Albert & Utzet, Frederic, 2010. "On the density of log-spot in the Heston volatility model," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2037-2063, September.
    7. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    8. Ai[dieresis]t-Sahalia, Yacine & Yu, Jialin, 2006. "Saddlepoint approximations for continuous-time Markov processes," Journal of Econometrics, Elsevier, vol. 134(2), pages 507-551, October.
    9. C. Gourieroux, 2006. "Continuous Time Wishart Process for Stochastic Risk," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 177-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Gnoatto & Martino Grasselli, 2011. "The explicit Laplace transform for the Wishart process," Papers 1107.2748, arXiv.org, revised Aug 2013.
    2. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    3. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    4. Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Mean–variance asset–liability management with asset correlation risk and insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 300-310.
    5. Chiarella, Carl & Da Fonseca, José & Grasselli, Martino, 2014. "Pricing range notes within Wishart affine models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 193-203.
    6. Kwai S. Leung & Hon Y. Ng & Hoi Y. Wong, 2014. "Stochastic Skew in the Interest Rate Cap Market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1146-1169, December.
    7. Hiroaki Hata & Jun Sekine, 2017. "Risk-Sensitive Asset Management in a Wishart-Autoregressive Factor Model with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 221-252, September.
    8. repec:uts:finphd:41 is not listed on IDEAS
    9. Branger, Nicole & Herold, Michael & Muck, Matthias, 2021. "International stochastic discount factors and covariance risk," Journal of Banking & Finance, Elsevier, vol. 123(C).
    10. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    11. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    12. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    13. Marcos Escobar & Daniel Krause & Rudi Zagst, 2016. "Stochastic covariance and dimension reduction in the pricing of basket options," Review of Derivatives Research, Springer, vol. 19(3), pages 165-200, October.
    14. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    15. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    16. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    17. Mayerhofer, Eberhard & Pfaffel, Oliver & Stelzer, Robert, 2011. "On strong solutions for positive definite jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 121(9), pages 2072-2086, September.
    18. Da Fonseca, José, 2016. "On moment non-explosions for Wishart-based stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 889-894.
    19. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
    20. Abdelkoddousse Ahdida & Aurélien Alfonsi, 2013. "Exact and high order discretization schemes for Wishart processes and their affine extensions," Post-Print hal-00491371, HAL.
    21. Yuyang Cheng & Marcos Escobar-Anel & Zhenxian Gong, 2019. "Generalized Mean-Reverting 4/2 Factor Model," JRFM, MDPI, vol. 12(4), pages 1-21, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.3347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.