IDEAS home Printed from
   My bibliography  Save this paper

Heavy tailed time series with extremal independence


  • Rafal Kulik
  • Philippe Soulier


We consider strictly stationary heavy tailed time series whose finite-dimensional exponent measures are concentrated on axes, and hence their extremal properties cannot be tackled using classical multivariate regular variation that is suitable for time series with extremal dependence. We recover relevant information about limiting behavior of time series with extremal independence by introducing a sequence of scaling functions and conditional scaling exponent. Both quantities provide more information about joint extremes than a widely used tail dependence coefficient. We calculate the scaling functions and the scaling exponent for variety of models, including Markov chains, exponential autoregressive model, stochastic volatility with heavy tailed innovations or volatility.

Suggested Citation

  • Rafal Kulik & Philippe Soulier, 2013. "Heavy tailed time series with extremal independence," Papers 1307.1501,, revised Oct 2014.
  • Handle: RePEc:arx:papers:1307.1501

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Gourieroux, Christian & Robert, Christian Y., 2006. "Stochastic Unit Root Models," Econometric Theory, Cambridge University Press, vol. 22(06), pages 1052-1090, December.
    2. Rootzén, Holger, 2009. "Weak convergence of the tail empirical process for dependent sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 468-490, February.
    3. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1307.1501. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.