IDEAS home Printed from
   My bibliography  Save this paper

On controller-stopper problems with jumps and their applications to indifference pricing of American options


  • Erhan Bayraktar
  • Zhou Zhou


We consider controller-stopper problems in which the controlled processes can have jumps. The global filtration is represented by the Brownian filtration, enlarged by the filtration generated by the jump process. We assume that there exists a conditional probability density function for the jump times and marks given the filtration of the Brownian motion and decompose the global controller-stopper problem into controller-stopper problems with respect to the Brownian filtration, which are determined by a backward induction. We apply our decomposition method to indifference pricing of American options under multiple default risk. The backward induction leads to a system of reflected backward stochastic differential equations (RBSDEs). We show that there exists a solution to this RBSDE system and that the solution provides a characterization of the value function.

Suggested Citation

  • Erhan Bayraktar & Zhou Zhou, 2012. "On controller-stopper problems with jumps and their applications to indifference pricing of American options," Papers 1212.4894,, revised Nov 2013.
  • Handle: RePEc:arx:papers:1212.4894

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Erhan Bayraktar & Ioannis Karatzas & Song Yao, 2009. "Optimal Stopping for Dynamic Convex Risk Measures," Papers 0909.4948,, revised Nov 2009.
    2. Erhan Bayraktar, 2007. "A Proof of the Smoothness of the Finite Time Horizon American Put Option for Jump Diffusions," Papers math/0703782,, revised Dec 2008.
    3. Ioannis Karatzas & (*), S. G. Kou, 1998. "Hedging American contingent claims with constrained portfolios," Finance and Stochastics, Springer, vol. 2(3), pages 215-258.
    4. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448,
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.4894. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.