IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1212.3147.html
   My bibliography  Save this paper

Lower Bound Approximation to Basket Option Values for Local Volatility Jump-Diffusion Models

Author

Listed:
  • Guoping Xu
  • Harry Zheng

Abstract

In this paper we derive an easily computed approximation to European basket call prices for a local volatility jump-diffusion model. We apply the asymptotic expansion method to find the approximate value of the lower bound of European basket call prices. If the local volatility function is time independent then there is a closed-form expression for the approximation. Numerical tests show that the suggested approximation is fast and accurate in comparison with the Monte Carlo and other approximation methods in the literature.

Suggested Citation

  • Guoping Xu & Harry Zheng, 2012. "Lower Bound Approximation to Basket Option Values for Local Volatility Jump-Diffusion Models," Papers 1212.3147, arXiv.org, revised Oct 2013.
  • Handle: RePEc:arx:papers:1212.3147
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1212.3147
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Xu, Guoping & Zheng, Harry, 2009. "Approximate basket options valuation for a jump-diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 188-194, October.
    2. Deelstra, G. & Liinev, J. & Vanmaele, M., 2004. "Pricing of arithmetic basket options by conditioning," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 55-77, February.
    3. Griselda Deelstra & Jan Liinev & Michèle Vanmaele, 2004. "Pricing of arithmetic basket options by conditioning," ULB Institutional Repository 2013/7600, ULB -- Universite Libre de Bruxelles.
    4. H. Albrecher & P. A. Mayer & W. Schoutens, 2008. "General Lower Bounds for Arithmetic Asian Option Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 123-149.
    5. Levy, Edmond, 1992. "Pricing European average rate currency options," Journal of International Money and Finance, Elsevier, vol. 11(5), pages 474-491, October.
    6. Michael Curran, 1994. "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price," Management Science, INFORMS, vol. 40(12), pages 1705-1711, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akihiko Takahashi, 2015. "Asymptotic Expansion Approach in Finance," CARF F-Series CARF-F-356, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.
    2. Kenichiro Shiraya & Akihiko Takahashi, 2015. "An Approximation Formula for Basket Option Prices under Local Stochastic Volatility with Jumps: an Application to Commodity Markets," CIRJE F-Series CIRJE-F-973, CIRJE, Faculty of Economics, University of Tokyo.
    3. Kenichiro Shiraya & Akihiko Takahashi, 2015. "An approximation formula for basket option prices under local stochastic volatility with jumps: an application to commodity markets," CARF F-Series CARF-F-361, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.3147. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.