IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1209.1544.html
   My bibliography  Save this paper

On Geometric Ergodicity of Skewed - SVCHARME models

Author

Listed:
  • Jerzy P. Rydlewski
  • Ma{l}gorzata Snarska

Abstract

Markov Chain Monte Carlo is repeatedly used to analyze the properties of intractable distributions in a convenient way. In this paper we derive conditions for geometric ergodicity of a general class of nonparametric stochastic volatility models with skewness driven by hidden Markov Chain with switching.

Suggested Citation

  • Jerzy P. Rydlewski & Ma{l}gorzata Snarska, 2012. "On Geometric Ergodicity of Skewed - SVCHARME models," Papers 1209.1544, arXiv.org.
  • Handle: RePEc:arx:papers:1209.1544
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1209.1544
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    2. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    3. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    4. Manabu Asai & Michael McAleer, 2005. "Dynamic Asymmetric Leverage in Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 317-332.
    5. Bhattacharya, Rabi & Lee, Chanho, 1995. "On geometric ergodicity of nonlinear autoregressive models," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 311-315, March.
    6. Danielsson, Jon, 1998. "Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 155-173, June.
    7. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    10. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    11. Faruk Selcuk, 2005. "Asymmetric stochastic volatility in emerging stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 15(12), pages 867-874.
    12. Jean-Pierre Stockis & Jürgen Franke & Joseph Tadjuidje Kamgaing, 2010. "On geometric ergodicity of CHARME models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 141-152, May.
    13. Kalimipalli, Madhu & Susmel, Raul, 2004. "Regime-switching stochastic volatility and short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 309-329, June.
    14. Cappuccio Nunzio & Lubian Diego & Raggi Davide, 2004. "MCMC Bayesian Estimation of a Skew-GED Stochastic Volatility Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-31, May.
    15. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    16. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    17. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
    18. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
    19. Neelabh Rohan & T. V. Ramanathan, 2013. "Nonparametric estimation of a time-varying GARCH model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 33-52, March.
    20. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1209.1544. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.