IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1208.4282.html
   My bibliography  Save this paper

Small time central limit theorems for semimartingales with applications

Author

Listed:
  • Stefan Gerhold
  • Max Kleinert
  • Piet Porkert
  • Mykhaylo Shkolnikov

Abstract

We give conditions under which the normalized marginal distribution of a semimartingale converges to a Gaussian limit law as time tends to zero. In particular, our result is applicable to solutions of stochastic differential equations with locally bounded and continuous coefficients. The limit theorems are subsequently extended to functional central limit theorems on the process level. We present two applications of the results in the field of mathematical finance: to the pricing of at-the-money digital options with short maturities and short time implied volatility skews.

Suggested Citation

  • Stefan Gerhold & Max Kleinert & Piet Porkert & Mykhaylo Shkolnikov, 2012. "Small time central limit theorems for semimartingales with applications," Papers 1208.4282, arXiv.org.
  • Handle: RePEc:arx:papers:1208.4282
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1208.4282
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
    3. Elisa Alòs & Jorge A. León & Monique Pontier & Josep Vives, 2008. "A Hull and White formula for a general stochastic volatility jump-diffusion model with applications to the study of the short-time behavior of the implied volatility," Economics Working Papers 1081, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Paolo Guasoni, 2006. "No Arbitrage Under Transaction Costs, With Fractional Brownian Motion And Beyond," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 569-582, July.
    5. E. Benhamou & E. Gobet & M. Miri, 2009. "Smart expansion and fast calibration for jump diffusions," Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
    6. Amel Bentata & Rama Cont, 2012. "Short-time asymptotics for marginal distributions of semimartingales," Working Papers hal-00667112, HAL.
    7. Michael Roper & Marek Rutkowski, 2009. "On The Relationship Between The Call Price Surface And The Implied Volatility Surface Close To Expiry," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 427-441.
    8. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    9. Amel Bentata & Rama Cont, 2012. "Short-time asymptotics for marginal distributions of semimartingales," Papers 1202.1302, arXiv.org.
    10. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    11. Martin Forde & Antoine Jacquier, 2009. "Small-Time Asymptotics For Implied Volatility Under The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(06), pages 861-876.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Friz & Stefan Gerhold & Arpad Pinter, 2016. "Option Pricing in the Moderate Deviations Regime," Papers 1604.01281, arXiv.org.
    2. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    3. Archil Gulisashvili & Peter Tankov, 2014. "Implied volatility of basket options at extreme strikes," Papers 1406.0394, arXiv.org.
    4. Zhi Jun Guo & Eckhard Platen, 2012. "The Small And Large Time Implied Volatilities In The Minimal Market Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-23.
    5. Dan Pirjol & Lingjiong Zhu, 2016. "Short Maturity Asian Options in Local Volatility Models," Papers 1609.07559, arXiv.org.
    6. Hossein Jafari & Ghazaleh Rahimi, 2019. "Small-Time Asymptotics In Geometric Asian Options For A Stochastic Volatility Jump-Diffusion Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-19, March.
    7. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    8. Dan Pirjol & Lingjiong Zhu, 2024. "Short-maturity asymptotics for option prices with interest rates effects," Papers 2402.14161, arXiv.org.
    9. Lingjiong Zhu, 2015. "Short maturity options for Azéma–Yor martingales," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-32, December.
    10. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    11. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
    12. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    13. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    14. Martin Forde & Antoine Jacquier, 2011. "The large-maturity smile for the Heston model," Finance and Stochastics, Springer, vol. 15(4), pages 755-780, December.
    15. Leif Andersen & Alexander Lipton, 2013. "Asymptotics For Exponential Lévy Processes And Their Volatility Smile: Survey And New Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-98.
    16. Dan Pirjol & Lingjiong Zhu, 2023. "Asymptotics for Short Maturity Asian Options in Jump-Diffusion models with Local Volatility," Papers 2308.15672, arXiv.org, revised Feb 2024.
    17. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2017. "Short-Term Market Risks Implied by Weekly Options," Journal of Finance, American Finance Association, vol. 72(3), pages 1335-1386, June.
    18. Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2012. "High-order short-time expansions for ATM option prices of exponential L\'evy models," Papers 1208.5520, arXiv.org, revised Apr 2014.
    19. Recchioni, Maria Cristina & Iori, Giulia & Tedeschi, Gabriele & Ouellette, Michelle S., 2021. "The complete Gaussian kernel in the multi-factor Heston model: Option pricing and implied volatility applications," European Journal of Operational Research, Elsevier, vol. 293(1), pages 336-360.
    20. Amel Bentata & Rama Cont, 2012. "Short-time asymptotics for marginal distributions of semimartingales," Papers 1202.1302, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1208.4282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.