IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1112.2749.html
   My bibliography  Save this paper

Asymptotic Analysis for Optimal Investment in Finite Time with Transaction Costs

Author

Listed:
  • Maxim Bichuch

Abstract

We consider an agent who invests in a stock and a money market account with the goal of maximizing the utility of his investment at the final time T in the presence of a proportional transaction cost. The utility function considered is power utility. We provide a heuristic and a rigorous derivation of the asymptotic expansion of the value function in powers of transaction cost parameter. We also obtain a "nearly optimal" strategy, whose utility asymptotically matches the leading terms in the value function.

Suggested Citation

  • Maxim Bichuch, 2011. "Asymptotic Analysis for Optimal Investment in Finite Time with Transaction Costs," Papers 1112.2749, arXiv.org.
  • Handle: RePEc:arx:papers:1112.2749
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1112.2749
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Cvitanic, Jaksa & Wang, Hui, 2001. "On optimal terminal wealth under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 223-231, April.
    2. (*), Thaleia Zariphopoulou & George M. Constantinides, 1999. "Bounds on prices of contingent claims in an intertemporal economy with proportional transaction costs and general preferences," Finance and Stochastics, Springer, vol. 3(3), pages 345-369.
    3. Magill, Michael J. P. & Constantinides, George M., 1976. "Portfolio selection with transactions costs," Journal of Economic Theory, Elsevier, vol. 13(2), pages 245-263, October.
    4. Jaksa Cvitanić & Ioannis Karatzas, 1996. "HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH-super-2," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165.
    5. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    6. Karel Janeček & Steven Shreve, 2004. "Asymptotic analysis for optimal investment and consumption with transaction costs," Finance and Stochastics, Springer, vol. 8(2), pages 181-206, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Gerhold & Paolo Guasoni & Johannes Muhle-Karbe & Walter Schachermayer, 2011. "Transaction Costs, Trading Volume, and the Liquidity Premium," Papers 1108.1167, arXiv.org, revised Jan 2013.
    2. Liu, Cong & Zheng, Harry, 2016. "Asymptotic analysis for target asset portfolio allocation with small transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 59-68.
    3. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    4. Stefan Gerhold & Paolo Guasoni & Johannes Muhle-Karbe & Walter Schachermayer, 2014. "Transaction costs, trading volume, and the liquidity premium," Finance and Stochastics, Springer, vol. 18(1), pages 1-37, January.
    5. Jan Kallsen & Shen Li, 2013. "Portfolio Optimization under Small Transaction Costs: a Convex Duality Approach," Papers 1309.3479, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.2749. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.