IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1112.2406.html
   My bibliography  Save this paper

On the game interpretation of a shadow price process in utility maximization problems under transaction costs

Author

Listed:
  • Dmitry B. Rokhlin

Abstract

To any utility maximization problem under transaction costs one can assign a frictionless model with a price process $S^*$, lying in the bid/ask price interval $[\underline S, \bar{S}]$. Such process $S^*$ is called a \emph{shadow price} if it provides the same optimal utility value as in the original model with bid-ask spread. We call $S^*$ a \emph{generalized shadow price} if the above property is true for the \emph{relaxed} utility function in the frictionless model. This relaxation is defined as the lower semicontinuous envelope of the original utility, considered as a function on the set $[\underline S, \bar{S}]$, equipped with some natural weak topology. We prove the existence of a generalized shadow price under rather weak assumptions and mark its relation to a saddle point of the trader/market zero-sum game, determined by the relaxed utility function. The relation of the notion of a shadow price to its generalization is illustrated by several examples. Also, we briefly discuss the interpretation of shadow prices via Lagrange duality.

Suggested Citation

  • Dmitry B. Rokhlin, 2011. "On the game interpretation of a shadow price process in utility maximization problems under transaction costs," Papers 1112.2406, arXiv.org, revised Dec 2011.
  • Handle: RePEc:arx:papers:1112.2406
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1112.2406
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Luigi Montrucchio, 2008. "Risk Measures: Rationality and Diversification," Carlo Alberto Notebooks 100, Collegio Carlo Alberto.
    2. Koopmans, Tjalling C, 1977. "Concepts of Optimality and Their Uses," American Economic Review, American Economic Association, vol. 67(3), pages 261-274, June.
    3. Cvitanic, Jaksa & Wang, Hui, 2001. "On optimal terminal wealth under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 223-231, April.
    4. Jaksa Cvitanić & Ioannis Karatzas, 1996. "HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH-super-2," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165.
    5. J. Kallsen & J. Muhle-Karbe, 2010. "On using shadow prices in portfolio optimization with transaction costs," Papers 1010.4989, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Czichowsky & Johannes Muhle-Karbe & Walter Schachermayer, 2012. "Transaction Costs, Shadow Prices, and Duality in Discrete Time," Papers 1205.4643, arXiv.org, revised Jan 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.2406. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.