IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1106.2685.html
   My bibliography  Save this paper

Agent based reasoning for the non-linear stochastic models of long-range memory

Author

Listed:
  • Aleksejus Kononovicius
  • Vygintas Gontis

Abstract

We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. Agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

Suggested Citation

  • Aleksejus Kononovicius & Vygintas Gontis, 2011. "Agent based reasoning for the non-linear stochastic models of long-range memory," Papers 1106.2685, arXiv.org, revised Aug 2011.
  • Handle: RePEc:arx:papers:1106.2685
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1106.2685
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lux, T. & M. Marchesi, "undated". "Scaling and Criticality in a Stochastic Multi-Agent Model of a Financial Market," Discussion Paper Serie B 438, University of Bonn, Germany, revised Jul 1998.
    2. M. Cristelli & L. Pietronero & A. Zaccaria, 2011. "Critical Overview of Agent-Based Models for Economics," Papers 1101.1847, arXiv.org.
    3. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Yayun & Wang, Jun & Xu, Kaixuan, 2017. "Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 364-376.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.2685. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.