IDEAS home Printed from
   My bibliography  Save this paper

On the Use of Policy Iteration as an Easy Way of Pricing American Options


  • Christoph Reisinger
  • Jan Hendrik Witte


In this paper, we demonstrate that policy iteration, introduced in the context of HJB equations in [Forsyth & Labahn, 2007], is an extremely simple generic algorithm for solving linear complementarity problems resulting from the finite difference and finite element approximation of American options. We show that, in general, O(N) is an upper and lower bound on the number of iterations needed to solve a discrete LCP of size N. If embedded in a class of standard discretisations with M time steps, the overall complexity of American option pricing is indeed only O(N(M+N)), and, therefore, for M N, identical to the pricing of European options, which is O(MN). We also discuss the numerical properties and robustness with respect to model parameters in relation to penalty and projected relaxation methods.

Suggested Citation

  • Christoph Reisinger & Jan Hendrik Witte, 2010. "On the Use of Policy Iteration as an Easy Way of Pricing American Options," Papers 1012.4976,, revised Sep 2011.
  • Handle: RePEc:arx:papers:1012.4976

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1012.4976. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.