IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1007.0691.html
   My bibliography  Save this paper

Phase transition in a log-normal Markov functional model

Author

Listed:
  • Dan Pirjol

Abstract

We derive the exact solution of a one-dimensional Markov functional model with log-normally distributed interest rates in discrete time. The model is shown to have two distinct limiting states, corresponding to small and asymptotically large volatilities, respectively. These volatility regimes are separated by a phase transition at some critical value of the volatility. We investigate the conditions under which this phase transition occurs, and show that it is related to the position of the zeros of an appropriately defined generating function in the complex plane, in analogy with the Lee-Yang theory of the phase transitions in condensed matter physics.

Suggested Citation

  • Dan Pirjol, 2010. "Phase transition in a log-normal Markov functional model," Papers 1007.0691, arXiv.org, revised Jan 2011.
  • Handle: RePEc:arx:papers:1007.0691
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1007.0691
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    2. Joanne Kennedy & Phil Hunt & Antoon Pelsser, 2000. "Markov-functional interest rate models," Finance and Stochastics, Springer, vol. 4(4), pages 391-408.
    3. P. Balland & L. P. Hughston, 2000. "Markov Market Model Consistent With Cap Smile," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 161-181.
    4. Dothan, L. Uri, 1978. "On the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 6(1), pages 59-69, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Pirjol, 2013. "Explosive Behavior In A Log-Normal Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-23.
    2. Dan Pirjol, 2015. "Hogan-Weintraub singularity and explosive behaviour in the Black-Derman-Toy model," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1243-1257, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Pirjol, 2016. "Eurodollar futures pricing in log-normal interest rate models in discrete time," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 445-464, November.
    2. Dan Pirjol, 2013. "Explosive Behavior In A Log-Normal Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-23.
    3. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. Junwu Gan, 2014. "An almost Markovian LIBOR market model calibrated to caps and swaptions," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1937-1959, November.
    7. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    8. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    9. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    10. Antonis Papapantoleon, 2009. "Old and new approaches to LIBOR modeling," Papers 0910.4941, arXiv.org, revised Apr 2010.
    11. Jaka Gogala & Joanne E. Kennedy, 2017. "CLASSIFICATION OF TWO- AND THREE-FACTOR TIME-HOMOGENEOUS SEPARABLE LMMs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-44, March.
    12. Raoul Pietersz & Antoon Pelsser & Marcel van Regenmortel, 2005. "Fast drift approximated pricing in the BGM model," Finance 0502005, University Library of Munich, Germany.
    13. Dan Pirjol, 2015. "Hogan-Weintraub singularity and explosive behaviour in the Black-Derman-Toy model," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1243-1257, July.
    14. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    15. Joanne Kennedy & Phil Hunt & Antoon Pelsser, 2000. "Markov-functional interest rate models," Finance and Stochastics, Springer, vol. 4(4), pages 391-408.
    16. Simon H. Babbs, 2002. "Conditional Gaussian models of the term structure of interest rates," Finance and Stochastics, Springer, vol. 6(3), pages 333-353.
    17. Ren-Raw Chen & Brian A. Maris & Tyler T. Yang, 1999. "Valuing Fixed-Income Options and Mortgage-Backed Securities with Alternative Term Structure Models," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 26(1-2), pages 33-55.
    18. Antonis Papapantoleon, 2010. "Old and new approaches to LIBOR modeling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(3), pages 257-275, August.
    19. Antonis Papapantoleon, 2010. "Old and new approaches to LIBOR modeling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 257-275.
    20. Dankenbring, Henning, 1998. "Volatility estimates of the short term interest rate with an application to German data," SFB 373 Discussion Papers 1998,96, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1007.0691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.