IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On the fractional Black-Scholes market with transaction costs

  • Ehsan Azmoodeh
Registered author(s):

    We consider fractional Black-Scholes market with proportional transaction costs. When transaction costs are present, one trades periodically i.e. we have the discrete trading with equidistance $n^{-1}$ between trading times. We derive a non trivial hedging error for a class of European options with convex payoff in the case when the transaction costs coefficients decrease as $n^{-(1-H)}$. We study the expected hedging error and asymptotic behavior of the hedge as $H \to 1/2$

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1005.0211
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1005.0211.

    as
    in new window

    Length:
    Date of creation: May 2010
    Date of revision:
    Handle: RePEc:arx:papers:1005.0211
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    2. Sottinen Tommi & Valkeila Esko, 2003. "On arbitrage and replication in the fractional Black–Scholes pricing model," Statistics & Risk Modeling, De Gruyter, vol. 21(2/2003), pages 93-108, February.
    3. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, 04.
    4. Paolo Guasoni & Miklós Rásonyi & Walter Schachermayer, 2010. "The fundamental theorem of asset pricing for continuous processes under small transaction costs," Annals of Finance, Springer, vol. 6(2), pages 157-191, March.
    5. Y. M. Kabanov & M. Safarian, 1995. "On Leland's Strategy of Option Pricing with Transaction Costs," SFB 373 Discussion Papers 1995,65, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1005.0211. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.