IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1004.3525.html
   My bibliography  Save this paper

$F$-divergence minimal equivalent martingale measures and optimal portfolios for exponential Levy models with a change-point

Author

Listed:
  • S. Cawston
  • L. Vostrikova

Abstract

We study exponential Levy models with change-point which is a random variable, independent from initial Levy processes. On canonical space with initially enlarged filtration we describe all equivalent martingale measures for change-point model and we give the conditions for the existence of f-divergence minimal equivalent martingale measure. Using the connection between utility maximisation and $f$-divergence minimisation, we obtain a general formula for optimal strategy in change-point case for initially enlarged filtration and also for progressively enlarged filtration in the case of exponential utility. We illustrate our results considering the Black-Scholes model with change-point.

Suggested Citation

  • S. Cawston & L. Vostrikova, 2010. "$F$-divergence minimal equivalent martingale measures and optimal portfolios for exponential Levy models with a change-point," Papers 1004.3525, arXiv.org, revised Jun 2011.
  • Handle: RePEc:arx:papers:1004.3525
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1004.3525
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Albert N. Shiryaev & Jan Kallsen, 2002. "The cumulant process and Esscher's change of measure," Finance and Stochastics, Springer, vol. 6(4), pages 397-428.
    2. Bayraktar, Erhan & Dayanik, Savas & Karatzas, Ioannis, 2005. "The standard Poisson disorder problem revisited," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1437-1450, September.
    3. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    4. Thomas Goll & Ludger Rüschendorf, 2001. "Minimax and minimal distance martingale measures and their relationship to portfolio optimization," Finance and Stochastics, Springer, vol. 5(4), pages 557-581.
    5. Marc Yor & Dilip B. Madan & Hélyette Geman, 2002. "Stochastic volatility, jumps and hidden time changes," Finance and Stochastics, Springer, vol. 6(1), pages 63-90.
    6. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Hélyette Geman & Dilip B. Madan & Marc Yor, 2001. "Time Changes for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 79-96.
    8. Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
    9. Tahir Choulli & Christophe Stricker, 2005. "Minimal Entropy-Hellinger Martingale Measure In Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 465-490.
    10. repec:dau:papers:123456789/1392 is not listed on IDEAS
    11. Kavtaradze, T. & Lazrieva, N. & Mania, M. & Muliere, P., 2007. "A Bayesian-martingale approach to the general disorder problem," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1093-1120, August.
    12. Jan Kallsen, 2000. "Optimal portfolios for exponential Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 357-374, August.
    13. repec:spr:compst:v:51:y:2000:i:3:p:357-374 is not listed on IDEAS
    14. Schweizer, Martin, 1999. "A guided tour through quadratic hedging approaches," SFB 373 Discussion Papers 1999,96, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    15. Helyette Geman & P. Carr & D. Madan & M. Yor, 2003. "Stochastic Volatility for Levy Processes," Post-Print halshs-00144385, HAL.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.3525. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.