IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Analysis of Fourier transform valuation formulas and applications

  • Ernst Eberlein
  • Kathrin Glau
  • Antonis Papapantoleon
Registered author(s):

    The aim of this article is to provide a systematic analysis of the conditions such that Fourier transform valuation formulas are valid in a general framework; i.e. when the option has an arbitrary payoff function and depends on the path of the asset price process. An interplay between the conditions on the payoff function and the process arises naturally. We also extend these results to the multi-dimensional case, and discuss the calculation of Greeks by Fourier transform methods. As an application, we price options on the minimum of two assets in L\'evy and stochastic volatility models.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/0809.3405
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 0809.3405.

    as
    in new window

    Length:
    Date of creation: Sep 2008
    Date of revision: Sep 2009
    Publication status: Published in Applied Mathematical Finance 2010, Vol. 17, No. 3, 211-240
    Handle: RePEc:arx:papers:0809.3405
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. T. R. Hurd & Zhuowei Zhou, 2009. "A Fourier transform method for spread option pricing," Papers 0902.3643, arXiv.org.
    2. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    4. L. Randall Wray & Stephanie Bell, 2004. "Introduction," Chapters, in: Credit and State Theories of Money, chapter 1 Edward Elgar.
    5. Biagini, Francesca & Bregman, Yuliya & Meyer-Brandis, Thilo, 2008. "Pricing of catastrophe insurance options written on a loss index with reestimation," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 214-222, October.
    6. Ernst Eberlein & Antonis Papapantoleon & Albert Shiryaev, 2008. "On the duality principle in option pricing: semimartingale setting," Finance and Stochastics, Springer, vol. 12(2), pages 265-292, April.
    7. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-24, October.
    8. Friedrich Hubalek & Jan Kallsen & Leszek Krawczyk, 2006. "Variance-optimal hedging for processes with stationary independent increments," Papers math/0607112, arXiv.org.
    9. Ernst Eberlein & Antonis Papapantoleon & Albert N. Shiryaev, 2008. "Esscher transform and the duality principle for multidimensional semimartingales," Papers 0809.0301, arXiv.org, revised Nov 2009.
    10. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    11. Martin Keller-Ressel & Antonis Papapantoleon & Josef Teichmann, 2009. "The affine LIBOR models," Papers 0904.0555, arXiv.org, revised Jul 2011.
    12. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein-Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0809.3405. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.