IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Maximizing the Growth Rate under Risk Constraints

  • Traian A. Pirvu
  • Gordan Zitkovic
Registered author(s):

    We investigate the ergodic problem of growth-rate maximization under a class of risk constraints in the context of incomplete, It\^{o}-process models of financial markets with random ergodic coefficients. Including {\em value-at-risk} (VaR), {\em tail-value-at-risk} (TVaR), and {\em limited expected loss} (LEL), these constraints can be both wealth-dependent(relative) and wealth-independent (absolute). The optimal policy is shown to exist in an appropriate admissibility class, and can be obtained explicitly by uniform, state-dependent scaling down of the unconstrained (Merton) optimal portfolio. This implies that the risk-constrained wealth-growth optimizer locally behaves like a CRRA-investor, with the relative risk-aversion coefficient depending on the current values of the market coefficients.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/0706.0480
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 0706.0480.

    as
    in new window

    Length:
    Date of creation: Jun 2007
    Date of revision:
    Handle: RePEc:arx:papers:0706.0480
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    2. W. H. Fleming & S. J. Sheu, 2000. "Risk-Sensitive Control and an Optimal Investment Model," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 197-213.
    3. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276.
    4. Aase, Knut K. & Øksendal, Bernt, 1988. "Admissible investment strategies in continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 30(2), pages 291-301, December.
    5. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2006. "Equilibrium impact of value-at-risk regulation," Journal of Economic Dynamics and Control, Elsevier, vol. 30(8), pages 1277-1313, August.
    6. Cuoco, Domenico & Liu, Hong, 2006. "An analysis of VaR-based capital requirements," Journal of Financial Intermediation, Elsevier, vol. 15(3), pages 362-394, July.
    7. Hakansson, Nils H, 1970. "Optimal Investment and Consumption Strategies Under Risk for a Class of Utility Functions," Econometrica, Econometric Society, vol. 38(5), pages 587-607, September.
    8. Wang, Tan, 2003. "Conditional preferences and updating," Journal of Economic Theory, Elsevier, vol. 108(2), pages 286-321, February.
    9. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    10. MacLean, Leonard C. & Sanegre, Rafael & Zhao, Yonggan & Ziemba, William T., 2004. "Capital growth with security," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 937-954, February.
    11. Jean-Pierre Fouque & Tracey Andrew Tullie, 2002. "Variance reduction for Monte Carlo simulation in a stochastic volatility environment," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 24-30.
    12. Samuelson, Paul A., 1979. "Why we should not make mean log of wealth big though years to act are long," Journal of Banking & Finance, Elsevier, vol. 3(4), pages 305-307, December.
    13. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    14. Yiu, K. F. C., 2004. "Optimal portfolios under a value-at-risk constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1317-1334, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0706.0480. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.