IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2017008.html
   My bibliography  Save this paper

A general approach for cure models in survival analysis

Author

Listed:
  • Patilea, Valentin
  • Van Keilegom, Ingrid

Abstract

No abstract is available for this item.

Suggested Citation

  • Patilea, Valentin & Van Keilegom, Ingrid, 2017. "A general approach for cure models in survival analysis," LIDAM Discussion Papers ISBA 2017008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2017008
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A184740/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    2. Wenbin Lu, 2008. "Maximum likelihood estimation in the proportional hazards cure model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 545-574, September.
    3. Schmidt, Peter & Witte, Ann Dryden, 1989. "Predicting criminal recidivism using 'split population' survival time models," Journal of Econometrics, Elsevier, vol. 40(1), pages 141-159, January.
    4. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    5. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    6. Hong‐Bin Fang & Gang Li & Jianguo Sun, 2005. "Maximum Likelihood Estimation in a Semiparametric Logistic/Proportional‐Hazards Mixture Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(1), pages 59-75, March.
    7. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    8. Lopez-Cheda, Ana & Cao, Ricardo & Jacome, Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," LIDAM Reprints ISBA 2017001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
    10. Othus, Megan & Li, Yi & Tiwari, Ram C., 2009. "A Class of Semiparametric Mixture Cure Survival Models With Dependent Censoring," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1241-1250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    2. Mohamed Elamin Abdallah Mohamed Elamin Omer & Mohd Rizam Abu Bakar & Mohd Bakri Adam & Mohd Shafie Mustafa, 2020. "Cure Models with Exponentiated Weibull Exponential Distribution for the Analysis of Melanoma Patients," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    3. Amico, Mailis & Van Keilegom, Ingrid, 2017. "Cure models in survival analysis," LIDAM Discussion Papers ISBA 2017007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Durga H. Kutal & Lianfen Qian, 2018. "A Non-Mixture Cure Model for Right-Censored Data with Fréchet Distribution," Stats, MDPI, vol. 1(1), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Motahareh Parsa & Ingrid Van Keilegom, 2023. "Accelerated failure time vs Cox proportional hazards mixture cure models: David vs Goliath?," Statistical Papers, Springer, vol. 64(3), pages 835-855, June.
    2. Justin Chown & Cédric Heuchenne & Ingrid Van Keilegom, 2020. "The nonparametric location-scale mixture cure model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1008-1028, December.
    3. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    4. Angelica Hernandez-Quintero & Jean-François Dupuy & Gabriel Escarela, 2011. "Analysis of a semiparametric mixture model for competing risks," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 305-329, April.
    5. Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.
    6. Peizhi Li & Yingwei Peng & Ping Jiang & Qingli Dong, 2020. "A support vector machine based semiparametric mixture cure model," Computational Statistics, Springer, vol. 35(3), pages 931-945, September.
    7. Ana López-Cheda & M. Amalia Jácome & Ricardo Cao, 2017. "Nonparametric latency estimation for mixture cure models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 353-376, June.
    8. Peláez, Rebeca & Van Keilegom, Ingrid & Cao, Ricardo & Vilar, Juan M., 2024. "Probability of default estimation in credit risk using mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    9. Philippe Lambert & Vincent Bremhorst, 2020. "Inclusion of time‐varying covariates in cure survival models with an application in fertility studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 333-354, January.
    10. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    11. Frederico Machado Almeida & Enrico Antônio Colosimo & Vinícius Diniz Mayrink, 2021. "Firth adjusted score function for monotone likelihood in the mixture cure fraction model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 131-155, January.
    12. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
    13. Wende Clarence Safari & Ignacio López-de-Ullibarri & María Amalia Jácome, 2023. "Latency function estimation under the mixture cure model when the cure status is available," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 608-627, July.
    14. Escobar-Bach, Mikael & Van Keilegom, Ingrid, 2023. "Nonparametric estimation of conditional cure models for heavy-tailed distributions and under insufficient follow-up," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    15. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    16. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    17. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 467-495, June.
    18. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2012. "n-uniformly consistent density estimation in nonparametric regression models," Journal of Econometrics, Elsevier, vol. 167(2), pages 305-316.
    19. Lorenzo Tedesco & Jad Beyhum & Ingrid Van Keilegom, 2023. "Instrumental variable estimation of the proportional hazards model by presmoothing," Papers 2309.02183, arXiv.org.
    20. Kyyrä, Tomi & Ollikainen, Virve, 2008. "To search or not to search? The effects of UI benefit extension for the older unemployed," Journal of Public Economics, Elsevier, vol. 92(10-11), pages 2048-2070, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2017008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.