Strategies for Modelling Nonlinear Time Series Relationships
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
DOI: 10.22004/ag.econ.267405
Download full text from publisher
Other versions of this item:
- Clive W. J. Granger, 1993. "Strategies for Modelling Nonlinear Time‐Series Relationships," The Economic Record, The Economic Society of Australia, vol. 69(3), pages 233-238, September.
References listed on IDEAS
- Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993.
"Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests,"
Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
- Tom Doan, "undated". "REGWHITENNTEST: RATS procedure to perform White neural network test on regression," Statistical Software Components RTS00183, Boston College Department of Economics.
- Tom Doan, "undated". "REGRESET: RATS procedure to perform Ramsey RESET test on regression," Statistical Software Components RTS00181, Boston College Department of Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Boero, Gianna & Marrocu, Emanuela, 2004.
"The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts,"
International Journal of Forecasting, Elsevier, vol. 20(2), pages 305-320.
- Boero, Gianna & Marrocu, Emanuela, "undated". "The Performance Of Setar Models: A Regime Conditional Evaluation Of Point, Interval And Density Forecasts," Economic Research Papers 269476, University of Warwick - Department of Economics.
- G. Boero & E. Marrocu, 2002. "The performance of Setar Models: a regime conditional evaluation of point, interval and density forecasts," Working Paper CRENoS 200208, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Boero, Gianna & Marrocu, Emanuela, 2003. "The Performance Of Setar Models : A Regime Conditional Evaluation Of Point, Interval And Density Forecasts," The Warwick Economics Research Paper Series (TWERPS) 663, University of Warwick, Department of Economics.
- Gary Madden & Joachim Tan, 2008.
"Forecasting international bandwidth capacity using linear and ANN methods,"
Applied Economics, Taylor & Francis Journals, vol. 40(14), pages 1775-1787.
- Madden, Gary G & Tan, Joachim, 2008. "Forecasting international bandwidth capacity using linear and ANN methods," MPRA Paper 13005, University Library of Munich, Germany.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhuo Qiao & Keith Lam, 2011. "Granger causal relations among Greater China stock markets: a nonlinear perspective," Applied Financial Economics, Taylor & Francis Journals, vol. 21(19), pages 1437-1450.
- Hong, Seung Hyun & Phillips, Peter C. B., 2010.
"Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
- Seung Hyun Hong & Peter C. B. Phillips, 2005. "Testing Linearity in Cointegrating Relations with an Application to Purchasing Power Parity," Cowles Foundation Discussion Papers 1541, Cowles Foundation for Research in Economics, Yale University.
- Aviral Kumar Tiwari & Adeolu O. Adewuyi & Olabanji B. Awodumi & David Roubaud, 2022. "Relationship between stock returns and inflation: New evidence from the US using wavelet and causality methods," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4515-4540, October.
- Rebeca Jiménez-Rodríguez, 2004. "Oil Price Shocks: Testing for Non-linearity," CSEF Working Papers 115, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
- de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Arne Steinkraus, 2019. "Estimating Treatment Effects With Artificial Neural Nets – A Comparison to Synthetic Control Method," Economics Bulletin, AccessEcon, vol. 39(4), pages 2778-2791.
- Heather M. Anderson & Farshid Vahid, 2005.
"Nonlinear Correlograms and Partial Autocorrelograms,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 957-982, December.
- Heather M. Anderson & Farshid Vahid, 2003. "Nonlinear Correlograms and Partial Autocorrelograms," Monash Econometrics and Business Statistics Working Papers 19/03, Monash University, Department of Econometrics and Business Statistics.
- Georg Keilbar & Yanfen Zhang, 2021.
"On cointegration and cryptocurrency dynamics,"
Digital Finance, Springer, vol. 3(1), pages 1-23, March.
- Keilbar, Georg & Zhang, Yanfen, 2020. "On Cointegration and Cryptocurrency Dynamics," IRTG 1792 Discussion Papers 2020-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Corradi, Valentina & Swanson, Norman R., 2002.
"A consistent test for nonlinear out of sample predictive accuracy,"
Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
- Corradi, V. & Swanson, N.R., 2000. "A Consistent Test for Nonlinear Out of Sample Predictive Accuracy," Discussion Papers 0012, University of Exeter, Department of Economics.
- Corradi, Valentina & Swanson, Norman R., 2004.
"Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives,"
International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
- Valentina Corradi & Norman Swanson, 2003. "Some Recent Developments in Predictive Accuracy Testing With Nested Models and (Generic) Nonlinear Alternatives," Departmental Working Papers 200316, Rutgers University, Department of Economics.
- Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009.
"Information in the Revision Process of Real-Time Datasets,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
- Valentina Corradi & Andres Fernandez & Norman R. Swanson, 2008. "Information in the revision process of real-time datasets," Working Papers 08-27, Federal Reserve Bank of Philadelphia.
- Norman R. Swanson & Valentina Corradi & Andres Fernandez, 2011. "Information in the Revision Process of Real-Time Datasets," Departmental Working Papers 201107, Rutgers University, Department of Economics.
- Zacharias Psaradakis & Marián Vávra, 2019.
"Portmanteau tests for linearity of stationary time series,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
- Marian Vavra, 2012. "Testing Non-linearity Using a Modified Q Test," Birkbeck Working Papers in Economics and Finance 1204, Birkbeck, Department of Economics, Mathematics & Statistics.
- Zacharias Psaradakis & Marian Vavra, 2016. "Portmanteau Tests for Linearity of Stationary Time Series," Working and Discussion Papers WP 1/2016, Research Department, National Bank of Slovakia.
- Zacharias Psaradakis & Marián Vávra, 2015. "Portmanteau Tests for Linearity of Stationary Time Series," Birkbeck Working Papers in Economics and Finance 1514, Birkbeck, Department of Economics, Mathematics & Statistics.
- Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
- Richard T. Baillie & George Kapetanios, 2006.
"Nonlinear Models with Strongly Dependent Processes and Applications to Forward Premia and Real Exchange Rates,"
Working Papers
570, Queen Mary University of London, School of Economics and Finance.
- Richard T. Baillie & George Kapetanios, 2006. "Nonlinear Models with Strongly Dependent Processes and Applications to Forward Premia and Real Exchange Rates," Working Papers 570, Queen Mary University of London, School of Economics and Finance.
- Terasvirta, Timo, 2006.
"Forecasting economic variables with nonlinear models,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457,
Elsevier.
- Teräsvirta, Timo, 2005. "Forecasting economic variables with nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 598, Stockholm School of Economics, revised 29 Dec 2005.
- Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
- Kuswanto, Heri & Sibbertsen, Philipp, 2009. "Testing for Long Memory Against ESTAR Nonlinearities," Hannover Economic Papers (HEP) dp-427, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Ali Taiebnia & Shapour Mohammadi, 2023. "Forecast accuracy of the linear and nonlinear autoregressive models in macroeconomic modeling," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2045-2062, December.
- T Tang, 2009. "Testing for Non-linearity in the Balancing Item of Balance of Payments Accounts: The Case of 20 Industrial Countries," Economic Issues Journal Articles, Economic Issues, vol. 14(2), pages 107-124, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:monebs:267405. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/ags/monebs/267405.html