IDEAS home Printed from https://ideas.repec.org/p/ags/gewi10/93975.html
   My bibliography  Save this paper

Recovering Localized Information On Agricultural Structure Underlying Data Confidentiality Regulations - Potentials Of Different Data Aggregation And Segregation Techniques

Author

Listed:
  • Gocht, Alexander
  • Roeder, Norbert

Abstract

The modelling and information system RAUMIS is used for policy impact assessment to measure the impact of agriculture on the environment. The county level resolution often limits the analysis and a further disaggregation at the municipality level would reduce aggregation bias and improve the assessment. Although the necessary data exists in Germany, data protection rules (DPR) prohibit their direct use. With methods such as the Locally Weighted Averages (LWA), and with aggregation singling production activities into larger groups of activities, the data at the municipality level can be made publicly available. However, this reduces the information content and introduces an additional error. This paper’s aim is to investigate how much information is necessary to satisfactorily estimate Germany-wide production activity levels at the municipality level and whether the data requirements are still in compliance with the DPR. We apply Highest Posterior Density (HPD) estimation, which is easily able to include sample information as prior. We tested different prior information content at the municipality level. However, the goodness of the developed estimation approach can only be evaluated having knowledge about the population. Because the real population is not known to us, we took advantage of the special situation in Bavaria and derived a pseudo population for that region. This is used to draw information conforming to DPR for our estimation and to evaluate the resulting estimates. We found that the proposed approach is capable of adequately estimating most activities without violating the DPR. These findings allow us to extend the approach towards the Germany-wide municipality coverage in RAUMIS.

Suggested Citation

  • Gocht, Alexander & Roeder, Norbert, 2010. "Recovering Localized Information On Agricultural Structure Underlying Data Confidentiality Regulations - Potentials Of Different Data Aggregation And Segregation Techniques," 50st Annual Conference, Braunschweig, Germany, September 29-October 1, 2010 93975, German Association of Agricultural Economists (GEWISOLA).
  • Handle: RePEc:ags:gewi10:93975
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/93975
    Download Restriction: no

    References listed on IDEAS

    as
    1. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    2. Heckelei, Thomas & Mittelhammer, Ronald C. & Jansson, Torbjorn, 2008. "A Bayesian Alternative To Generalized Cross Entropy Solutions For Underdetermined Econometric Models," Discussion Papers 56973, University of Bonn, Institute for Food and Resource Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Highest Posterior Density estimator (HPD); RAUMIS; locally weighted average (LWA); Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:gewi10:93975. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/gewisea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.