IDEAS home Printed from https://ideas.repec.org/h/spr/circec/v3y2023i2d10.1007_s43615-022-00204-7.html
   My bibliography  Save this book chapter

Opportunities in Critical Rare Earth Metal Recycling Value Chains for Economic Growth with Sustainable Technological Innovations

Author

Listed:
  • Ajay B. Patil

    (ENAC IIE GR-LUD
    Paul Scherrer Institut (PSI), Villigen PSI
    REMRETEch GmbH, PARK INNOVAARE: Delivery LAB)

  • Rudolf P. W. J. Struis

    (ENAC IIE GR-LUD
    Paul Scherrer Institut (PSI), Villigen PSI
    REMRETEch GmbH, PARK INNOVAARE: Delivery LAB)

  • Christian Ludwig

    (ENAC IIE GR-LUD
    Paul Scherrer Institut (PSI), Villigen PSI)

Abstract

Rare earth elements (REEs) are often referred to as the industrial vitamins and the key drivers of the industry 4.0 revolution. The current global supply chain of REEs for green and high-tech applications with more than 220 metric kilotons per year involves a huge environmental impact (backpack) as well as the piling up of radioactive by-products to about 1.5 times the amount of REEs produced. E-wastes and municipal solid waste streams are attractive secondary resources. The current opinion paper discusses the recycling of rare earth metals along the value chain with the opportunities and challenges associated with it. The way to mitigate the economic constraints has been pointed out in terms of competitive quality and recovery of the REEs when compared with the mineral exploration options in the market. It is also emphasised that the technical complexity, capital expenditures and operating expenses need to fit the economic boundary conditions to make the recycling viable. In future, the appropriate REE-rich feedstocks such as fluorescent lamp e-waste powders and magnets can be potential secondary sources of the critical raw materials necessary for the green transition. The success of the viable recycling approaches and technologies will largely depend on the public–private partnerships based on hybrid financing models and local know-how generation to compete with quasi-monopoly in the REE supply chains. However, to break the monopolies, it will not be sufficient to only recycle the REEs; it will also be relevant to diversify the industries that produce REE-containing goods from recycled waste streams.

Suggested Citation

  • Ajay B. Patil & Rudolf P. W. J. Struis & Christian Ludwig, 2023. "Opportunities in Critical Rare Earth Metal Recycling Value Chains for Economic Growth with Sustainable Technological Innovations," Circular Economy and Sustainability,, Springer.
  • Handle: RePEc:spr:circec:v:3:y:2023:i:2:d:10.1007_s43615-022-00204-7
    DOI: 10.1007/s43615-022-00204-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-022-00204-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-022-00204-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Massari, Stefania & Ruberti, Marcello, 2013. "Rare earth elements as critical raw materials: Focus on international markets and future strategies," Resources Policy, Elsevier, vol. 38(1), pages 36-43.
    2. Han, Aiping & Ge, Jianping & Lei, Yalin, 2016. "Vertical vs. horizontal integration: Game analysis for the rare earth industrial integration in China," Resources Policy, Elsevier, vol. 50(C), pages 149-159.
    3. Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
    4. Golev, Artem & Scott, Margaretha & Erskine, Peter D. & Ali, Saleem H. & Ballantyne, Grant R., 2014. "Rare earths supply chains: Current status, constraints and opportunities," Resources Policy, Elsevier, vol. 41(C), pages 52-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    2. Yi, Jiahui & Dai, Sheng & Cheng, Jinhua & Wu, Qiaosheng & Liu, Kailei, 2021. "Production quota policy in China: Implications for sustainable supply capacity of critical minerals," Resources Policy, Elsevier, vol. 72(C).
    3. Machacek, Erika & Fold, Niels, 2014. "Alternative value chains for rare earths: The Anglo-deposit developers," Resources Policy, Elsevier, vol. 42(C), pages 53-64.
    4. Schlinkert, Dominik & van den Boogaart, Karl Gerald, 2015. "The development of the market for rare earth elements: Insights from economic theory," Resources Policy, Elsevier, vol. 46(P2), pages 272-280.
    5. Hau, Liya & Zhu, Huiming & Yu, Yang & Yu, Dongwei, 2022. "Time-frequency coherence and quantile causality between trade policy uncertainty and rare earth prices: Evidence from China and the US," Resources Policy, Elsevier, vol. 75(C).
    6. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    7. Fan, John Hua & Omura, Akihiro & Roca, Eduardo, 2023. "Geopolitics and rare earth metals," European Journal of Political Economy, Elsevier, vol. 78(C).
    8. Brown, Maxwell & Eggert, Roderick, 2018. "Simulating producer responses to selected chinese rare earth policies," Resources Policy, Elsevier, vol. 55(C), pages 31-48.
    9. Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Menéndez Álvarez, Mario & Gent, Malcolm Richard, 2017. "Rare earth elements mining investment: It is not all about China," Resources Policy, Elsevier, vol. 53(C), pages 66-76.
    10. Stanley Udochukwu Ofoegbu, 2019. "Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing," Sustainability, MDPI, vol. 11(23), pages 1-38, November.
    11. Ba, Bocar Samba & Combes-Motel, Pascale & Schwartz, Sonia, 2020. "Challenging pollution and the balance problem from rare earth extraction: how recycling and environmental taxation matter," Environment and Development Economics, Cambridge University Press, vol. 25(6), pages 634-656, December.
    12. Zhang, Kuangyuan & Kleit, Andrew N. & Nieto, Antonio, 2017. "An economics strategy for criticality – Application to rare earth element Yttrium in new lighting technology and its sustainable availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 899-915.
    13. Powell-Turner, Julieanna & Antill, Peter D., 2015. "Will future resource demand cause significant and unpredictable dislocations for the UK Ministry of Defence?," Resources Policy, Elsevier, vol. 45(C), pages 217-226.
    14. Machacek, Erika & Richter, Jessika Luth & Habib, Komal & Klossek, Polina, 2015. "Recycling of rare earths from fluorescent lamps: Value analysis of closing-the-loop under demand and supply uncertainties," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 76-93.
    15. Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    16. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Kondo, Yasushi & Tohno, Susumu, 2017. "Economic and social determinants of global physical flows of critical metals," Resources Policy, Elsevier, vol. 52(C), pages 107-113.
    17. Machacek, Erika & Kalvig, Per, 2016. "Assessing advanced rare earth element-bearing deposits for industrial demand in the EU," Resources Policy, Elsevier, vol. 49(C), pages 186-203.
    18. Xiao, Shijiang & Geng, Yong & Rui, Xue & Su, Chang & Yao, Tianli, 2022. "Behind of the criticality for rare earth elements: Surplus of China’s yttrium," Resources Policy, Elsevier, vol. 76(C).
    19. Zhü, kèyù & Zhao, Shuang-yao & Yang, Shanlin & Liang, Changyong & Gu, Dongxiao, 2016. "Where is the way for rare earth industry of China: An analysis via ANP-SWOT approach," Resources Policy, Elsevier, vol. 49(C), pages 349-357.
    20. Zuo, Zhili & Cheng, Jinhua & Guo, Haixiang & McLellan, Benjamin Craig, 2021. "Catastrophe progression method - path (CPM-PATH) early warning analysis of Chinese rare earths industry security," Resources Policy, Elsevier, vol. 73(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:3:y:2023:i:2:d:10.1007_s43615-022-00204-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.