Data Privacy for Record Linkage and Beyond
In: Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- P. Lahiri & Michael D. Larsen, 2005. "Regression Analysis With Linked Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 222-230, March.
- Rebecca C. Steorts & Rob Hall & Stephen E. Fienberg, 2016. "A Bayesian Approach to Graphical Record Linkage and Deduplication," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1660-1672, October.
- N. Salvati & E. Fabrizi & M. G. Ranalli & R. L. Chambers, 2021. "Small area estimation with linked data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 78-107, February.
- Ying Han & Partha Lahiri, 2019. "Statistical Analysis with Linked Data," International Statistical Review, International Statistical Institute, vol. 87(S1), pages 139-157, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bera Sabyasachi & Chatterjee Snigdhansu, 2020. "High dimensional, robust, unsupervised record linkage," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 123-143, August.
- Sabyasachi Bera & Snigdhansu Chatterjee, 2020. "High dimensional, robust, unsupervised record linkage," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 123-143, August.
- Han Ying, 2020. "Discussion of “Small area estimation: its evolution in five decades”, by Malay Ghosh," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 30-34, August.
- Ying Han, 2020. "Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 30-34, August.
- John M. Abowd & Joelle Abramowitz & Margaret C. Levenstein & Kristin McCue & Dhiren Patki & Trivellore Raghunathan & Ann M. Rodgers & Matthew D. Shapiro & Nada Wasi & Dawn Zinsser, 2021.
"Finding Needles in Haystacks: Multiple-Imputation Record Linkage Using Machine Learning,"
Working Papers
21-35, Center for Economic Studies, U.S. Census Bureau.
- John M. Abowd & Joelle Hillary Abramowitz & Margaret Catherine Levenstein & Kristin McCue & Dhiren Patki & Trivellore Raghunathan & Ann Michelle Rodgers & Matthew D. Shapiro & Nada Wasi & Dawn Zinsser, 2021. "Finding Needles in Haystacks: Multiple-Imputation Record Linkage Using Machine Learning," Working Papers 22-11, Federal Reserve Bank of Boston.
- Vo, Thanh Huan & Chauvet, Guillaume & Happe, André & Oger, Emmanuel & Paquelet, Stéphane & Garès, Valérie, 2023. "Extending the Fellegi-Sunter record linkage model for mixed-type data with application to the French national health data system," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Al-Kandari Noriah M. & Lahiri Partha, 2016. "Prediction of a Function of Misclassified Binary Data," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 429-447, September.
- Ben Powell & Paul A. Smith, 2020. "Computing expectations and marginal likelihoods for permutations," Computational Statistics, Springer, vol. 35(2), pages 871-891, June.
- Durrant, Gabriele B. & D'Arrigo, Julia & Steele, Fiona, 2011. "Using field process data to predict best times of contact conditioning on household and interviewer influences," LSE Research Online Documents on Economics 52201, London School of Economics and Political Science, LSE Library.
- Kim, Gunky & Chambers, Raymond, 2012. "Regression analysis under incomplete linkage," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2756-2770.
- Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Daniel H. Weinberg & John M. Abowd & Robert F. Belli & Noel Cressie & David C. Folch & Scott H. Holan & Margaret C. Levenstein & Kristen M. Olson & Jerome P. Reiter & Matthew D. Shapiro & Jolene Smyth, 2017. "Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?," Working Papers 17-59r, Center for Economic Studies, U.S. Census Bureau.
- Beręsewicz Maciej, 2019. "Correlates of Representation Errors in Internet Data Sources for Real Estate Market," Journal of Official Statistics, Sciendo, vol. 35(3), pages 509-529, September.
- Jana Asher & Dean Resnick & Jennifer Brite & Robert Brackbill & James Cone, 2020. "An Introduction to Probabilistic Record Linkage with a Focus on Linkage Processing for WTC Registries," IJERPH, MDPI, vol. 17(18), pages 1-16, September.
- Noriah M. Al-Kandari & Partha Lahiri, 2016. "Prediction Of A Function Of Misclassified Binary Data," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 429-447, September.
- Sarah Tahamont & Zubin Jelveh & Aaron Chalfin & Shi Yan & Benjamin Hansen, 2019. "Administrative Data Linking and Statistical Power Problems in Randomized Experiments," NBER Working Papers 25657, National Bureau of Economic Research, Inc.
- Duncan Smith, 2020. "Re‐identification in the Absence of Common Variables for Matching," International Statistical Review, International Statistical Institute, vol. 88(2), pages 354-379, August.
- D. H. Judson, 2007. "Information integration for constructing social statistics: history, theory and ideas towards a research programme," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 483-501, March.
- Loredana Di Consiglio & Tiziana Tuoto, 2020. "A comparison of area level and unit level small area models in the presence of linkage errors," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 103-122, August.
- John M. Abowd & Joelle Abramowitz & Margaret C. Levenstein & Kristin McCue & Dhiren Patki & Trivellore Raghunathan & Ann M. Rodgers & Matthew D. Shapiro & Nada Wasi, 2019. "Optimal Probabilistic Record Linkage: Best Practice for Linking Employers in Survey and Administrative Data," Working Papers 19-08, Center for Economic Studies, U.S. Census Bureau.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberch:15030. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.