IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v170y2007i2p483-501.html
   My bibliography  Save this article

Information integration for constructing social statistics: history, theory and ideas towards a research programme

Author

Listed:
  • D. H. Judson

Abstract

Summary. More precise policy making at all levels of government has fuelled tremendous demand for small area data—smaller than ever before. At the same time, there has been an unprecedented accumulation of data in geographic information systems, administrative records databases and more sophisticated survey sampling schemes. Researchers and practitioners have been trying to combine these diverse sources of data. But how should these diverse sources of data be combined in a way that is policy relevant and statistically principled? The paper illustrates these questions with several example applications at the state, county and local level: emerging geographic information systems databases, the need for estimates of small area income, poverty, demographic and uninsurance data by health authorities, and how administrative records databases (such as licensed day care facilities, traffic counts and unemployment insurance records) are being harvested for their information content. Finally, the paper proposes approaches for integrating these diverse sources of data with different error, uncertainty and quality profiles, and surveys persistent challenges in this area.

Suggested Citation

  • D. H. Judson, 2007. "Information integration for constructing social statistics: history, theory and ideas towards a research programme," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 483-501, March.
  • Handle: RePEc:bla:jorssa:v:170:y:2007:i:2:p:483-501
    DOI: 10.1111/j.1467-985X.2007.00472.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2007.00472.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2007.00472.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeff Tayman & David Swanson, 1996. "On the utility of population forecasts," Demography, Springer;Population Association of America (PAA), vol. 33(4), pages 523-528, November.
    2. Philip Redfern, 1989. "Population Registers: Some Administrative and Statistical Pros and Cons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 152(1), pages 1-28, January.
    3. P. Lahiri & Michael D. Larsen, 2005. "Regression Analysis With Linked Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 222-230, March.
    4. M Tranmer & D G Steel, 1998. "Using Census Data to Investigate the Causes of the Ecological Fallacy," Environment and Planning A, , vol. 30(5), pages 817-831, May.
    5. P Williamson & M Birkin & P H Rees, 1998. "The Estimation of Population Microdata by Using Data from Small Area Statistics and Samples of Anonymised Records," Environment and Planning A, , vol. 30(5), pages 785-816, May.
    6. Larsen M. D & Rubin D. B, 2001. "Iterative Automated Record Linkage Using Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 32-41, March.
    7. J Charlton, 1998. "Use of the Census Samples of Anonymised Records (SARs) and Survey Data in Combination to Obtain Estimates at Local Authority Level," Environment and Planning A, , vol. 30(5), pages 775-784, May.
    8. D King & D Bolsdon, 1998. "Using the SARs to Add Policy Value to Household Projections," Environment and Planning A, , vol. 30(5), pages 867-880, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernard Baffour & Thomas King & Paolo Valente, 2013. "The Modern Census: Evolution, Examples and Evaluation," International Statistical Review, International Statistical Institute, vol. 81(3), pages 407-425, December.
    2. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afshin Fallah & Mohsen Mohammadzadeh, 2010. "Bayesian regression analysis with linked data using mixture normal distributions," Statistical Papers, Springer, vol. 51(2), pages 421-430, June.
    2. Bera Sabyasachi & Chatterjee Snigdhansu, 2020. "High dimensional, robust, unsupervised record linkage," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 123-143, August.
    3. Sabyasachi Bera & Snigdhansu Chatterjee, 2020. "High dimensional, robust, unsupervised record linkage," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 123-143, August.
    4. Al-Kandari Noriah M. & Lahiri Partha, 2016. "Prediction of a Function of Misclassified Binary Data," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 429-447, September.
    5. Michael P. Cameron & William Cochrane, 2015. "Using Land-Use Modelling to Statistically Downscale Population Projections to Small Areas," Working Papers in Economics 15/12, University of Waikato.
    6. Loughrey, Jason & O’Donoghue, Cathal & Meredith, David & Murphy, Ger & Shanahan, Ultan & Miller, Corina, 2018. "The Local Impact of Cattle Farming," 166th Seminar, August 30-31, 2018, Galway, West of Ireland 276231, European Association of Agricultural Economists.
    7. Ben Powell & Paul A. Smith, 2020. "Computing expectations and marginal likelihoods for permutations," Computational Statistics, Springer, vol. 35(2), pages 871-891, June.
    8. Han Ying, 2020. "Discussion of “Small area estimation: its evolution in five decades”, by Malay Ghosh," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 30-34, August.
    9. Durrant, Gabriele B. & D'Arrigo, Julia & Steele, Fiona, 2011. "Using field process data to predict best times of contact conditioning on household and interviewer influences," LSE Research Online Documents on Economics 52201, London School of Economics and Political Science, LSE Library.
    10. Kim, Gunky & Chambers, Raymond, 2012. "Regression analysis under incomplete linkage," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2756-2770.
    11. Mary Layne & Deborah Wagner & Cynthia Rothhaas, 2014. "Estimating Record Linkage False Match Rate for the Person Identification Validation System," CARRA Working Papers 2014-02, Center for Economic Studies, U.S. Census Bureau.
    12. Ying Han, 2020. "Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 30-34, August.
    13. Philip Redfern, 2004. "An alternative view of the 2001 census and future census taking," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(2), pages 209-228, May.
    14. Robert Tanton, 2014. "A Review of Spatial Microsimulation Methods," International Journal of Microsimulation, International Microsimulation Association, vol. 7(1), pages 4-25.
    15. Debabrata Dey, 2003. "Record Matching in Data Warehouses: A Decision Model for Data Consolidation," Operations Research, INFORMS, vol. 51(2), pages 240-254, April.
    16. Itismita Mohanty & Robert Tanton & Yogi Vidyattama & Marcia Keegan & Robert Cummins, 2013. "‘Small area estimates of Subjective Wellbeing: Spatial Microsimulation on the Australian Unity Wellbeing Index Survey’," NATSEM Working Paper Series 13/23, University of Canberra, National Centre for Social and Economic Modelling.
    17. Stefan Rayer, 2007. "Population forecast accuracy: does the choice of summary measure of error matter?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(2), pages 163-184, April.
    18. Michael Scholz & Markus Franz & Oliver Hinz, 2016. "The Ambiguous Identifier Clustering Technique," Electronic Markets, Springer;IIM University of St. Gallen, vol. 26(2), pages 143-156, May.
    19. Francesco D. d’Ovidio & Paola Perchinunno & Laura Antonucci, 2021. "Data Integration Techniques for the Identification of Poverty Profiles," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 515-531, August.
    20. Ann Harding & Robert Tanton, 2014. "Policy and people at the small-area level: using micro-simulation to create synthetic spatial data," Chapters, in: Robert Stimson (ed.), Handbook of Research Methods and Applications in Spatially Integrated Social Science, chapter 25, pages 560-586, Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:170:y:2007:i:2:p:483-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.