IDEAS home Printed from https://ideas.repec.org/h/era/chaptr/2014-rpr-27-8.html
   My bibliography  Save this book chapter

The Impacts and Interaction of Upstream and Downstream Policies for the Solar Photovoltaic Industries of China

In: Financing Renewable Energy Development in East Asia Summit Countries A Primer of Effective Policy Instruments

Author

Listed:
  • Wang Hongwei
  • Zhang Kai
  • Vanessa Yanhua Zhang

Abstract

In this chapter, we provide a research framework on the industrial structure of solar photovoltaic (PV) industry in China and aim to study the incentive correlation and interaction between upstream and downstream firms. We first draw a picture of Chinese solar PV industry and go through the literature to lay out the history and existing policies of the industry and current issues that companies in different positions in the industry chain have to face. Secondly, we use industry data and apply unit root test, Johansen cointegration analysis, Granger causal test, and Directed Acyclic Graph test. With these econometric methods, we study the long-term relationship between the polysilicon price, government subsidies on polysilicon plants, the solar cell price, the solar power price, and government subsidies on solar power. Our analysis shows that the policy-conducting effects from upstream PV firms to the downstream products are smaller than that coming from the downstream PV firms to the upstream products. Policy implications are discussed. We recommend that the Chinese government should issue policies to facilitate coordination between the central government and local governments on the development of PV industry in China. The government should encourage indigenous innovations in the PV industry and improve its competitiveness. Policies on electricity pricing and cost allocation should also be improved to ensure the steady growth of the solar PV industry in China.

Suggested Citation

  • Wang Hongwei & Zhang Kai & Vanessa Yanhua Zhang, . "The Impacts and Interaction of Upstream and Downstream Policies for the Solar Photovoltaic Industries of China," Chapters, in: Shigeru Kimura & Youngho Chang & Yanfei Li (ed.), Financing Renewable Energy Development in East Asia Summit Countries A Primer of Effective Policy Instruments, chapter 8, pages 223-265, Economic Research Institute for ASEAN and East Asia (ERIA).
  • Handle: RePEc:era:chaptr:2014-rpr-27-8
    as

    Download full text from publisher

    File URL: http://www.eria.org/RPR_FY2014_No.27_Chapter_8.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de la Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2011. "Innovation and international technology transfer: The case of the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 39(2), pages 761-770, February.
    2. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in eastern European Union countries," Energy Policy, Elsevier, vol. 38(8), pages 4011-4020, August.
    3. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in western European Union countries," Energy Policy, Elsevier, vol. 38(7), pages 3297-3308, July.
    4. McDonald, N.C. & Pearce, J.M., 2010. "Producer responsibility and recycling solar photovoltaic modules," Energy Policy, Elsevier, vol. 38(11), pages 7041-7047, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruyin Long & Wenhua Cui & Qianwen Li, 2017. "The Evolution and Effect Evaluation of Photovoltaic Industry Policy in China," Sustainability, MDPI, vol. 9(12), pages 1-40, November.
    2. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    3. Cherrington, R. & Goodship, V. & Longfield, A. & Kirwan, K., 2013. "The feed-in tariff in the UK: A case study focus on domestic photovoltaic systems," Renewable Energy, Elsevier, vol. 50(C), pages 421-426.
    4. Gobong Choi & Eunnyeong Heo & Chul-Yong Lee, 2018. "Dynamic Economic Analysis of Subsidies for New and Renewable Energy in South Korea," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    5. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    6. Ieva Pakere & Dace Lauka & Dagnija Blumberga, 2020. "Does the Balance Exist between Cost Efficiency of Different Energy Efficiency Measures? DH Systems Case," Energies, MDPI, vol. 13(19), pages 1-16, October.
    7. Dusonchet, L. & Telaretti, E., 2015. "Comparative economic analysis of support policies for solar PV in the most representative EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 986-998.
    8. Antonelli, Marco & Desideri, Umberto, 2014. "The doping effect of Italian feed-in tariffs on the PV market," Energy Policy, Elsevier, vol. 67(C), pages 583-594.
    9. Olivier De Groote & Axel Gautier & Frank Verboven, 2020. "The political economic of financing climate policy : evidence from the solar PV subsidy programs," Working Paper Research 389, National Bank of Belgium.
    10. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    11. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    12. Hafeznia, Hamed & Aslani, Alireza & Anwar, Sohail & Yousefjamali, Mahdis, 2017. "Analysis of the effectiveness of national renewable energy policies: A case of photovoltaic policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 669-680.
    13. de la Hoz, Jordi & Martín, Helena & Ballart, Jordi & Córcoles, Felipe & Graells, Moisès, 2013. "Evaluating the new control structure for the promotion of grid connected photovoltaic systems in Spain: Performance analysis of the period 2008–2010," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 541-554.
    14. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    15. Jan Prusa & Andrea Klimesova & Karel Janda, 2013. "Consumer Loss in Czech Photovoltaic Power Plants," CAMA Working Papers 2013-50, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    16. Sarasa-Maestro, Carlos J. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Photovoltaic remuneration policies in the European Union," Energy Policy, Elsevier, vol. 55(C), pages 317-328.
    17. Karel Janda & Štěpán Krška & Jan Průša, 2014. "Česká fotovoltaická energie: modelový odhad nákladů na její podporu [Czech Photovoltaic Energy: Model Estimation of The Costs of its Support]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(3), pages 323-346.
    18. Telaretti, E. & Dusonchet, L., 2017. "Stationary battery technologies in the U.S.: Development Trends and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 380-392.
    19. Martin, Nigel & Rice, John, 2015. "Improving Australia's renewable energy project policy and planning: A multiple stakeholder analysis," Energy Policy, Elsevier, vol. 84(C), pages 128-141.
    20. Jan Prùša & Andrea Klimešová & Karel Janda, 2012. "Economic Loss in Czech Photovoltaic Power Plants," Working Papers IES 2012/18, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2012.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:era:chaptr:2014-rpr-27-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ranti Amelia (email available below). General contact details of provider: https://edirc.repec.org/data/eriadid.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.