IDEAS home Printed from https://ideas.repec.org/a/zib/zjmerd/v42y2019i1p116-121.html
   My bibliography  Save this article

The Effect Of Adding Candlenut Shell Into The Low-Rank Coal On Combustion Performance

Author

Listed:
  • Daud Patabang

    (Graduate Student in Mechanical Engineering, Hasanuddin University, Gowa, Indonesia)

  • Effendy Arif

    (Department of Mechanical Engineering, Hasanuddin University, Gowa, Indonesia)

  • Jalaluddin

    (Department of Mechanical Engineering, Hasanuddin University, Gowa, Indonesia)

  • Nasruddin Aziz

    (Department of Mechanical Engineering, Hasanuddin University, Gowa, Indonesia)

Abstract

The potential of coal in Indonesia approximately 151 billion tons, there are 61% of Low-rank coal (LRC), which has a Higher Heating Value (HHV) of 5,100-6,100 kcal/kg and Moisture content of 30-40%. Combustion of the LRC contributes to global warming due to its CO2 emission. The LRC has also a low igl (CNS). The combustion performance of LRC mixed with CNS was investigated by determining its combustion efficiency and the impact on combustion gas emission including Carbon Dioxide (CO2), Carbon Monoxide (CO), Nitrogen Oxide (NOx), and Sulfur Dioxide (SOx). This study was conducted by adding CNS into LRC of 10%, 30%, 50%, 70%, and 90%, respectively. The characteristic of the specimen is obtained from proximate and ultimate analysis based on ASTM standard. The combustion performance of mixing LRC and CNS was investigated in the electric furnace combustors with the burn-out temperature of 500, 625, 750, and 875 oC respectively. The combustion oxidant used oxygen which was supplied constantly. The combustion gas emissions were measured by using Thermoline MRU Air Fair VARIO plus test apparatus. The result shows that the addition of CNS into the LRC improves combustion performance significantly. The results show that the addition of 10% of CNS into the LRC yield the combustion efficiency varies in the range of 0.92 – 14.42%. The addition of CNS into the LRC has a significant impact on reducing CO2, CO, NOx and SOx emissions. For example, adding 10% CNS into the LRC can reduce SOx emission of 16.80%, and adding 90% CNS of 80.67% with combustion temperature of 500 oC. Improving the combustion performance by increasing combustion efficiency and reducing gas emissions will reduce global warming and also decrease slagging and fouling of combustion apparatus due to decrease of Sulfur content in the CNS and LRC mixtures.

Suggested Citation

  • Daud Patabang & Effendy Arif & Jalaluddin & Nasruddin Aziz, 2019. "The Effect Of Adding Candlenut Shell Into The Low-Rank Coal On Combustion Performance," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 116-121, March.
  • Handle: RePEc:zib:zjmerd:v:42:y:2019:i:1:p:116-121
    DOI: 10.26480/jmerd.01.2019.116.121
    as

    Download full text from publisher

    File URL: https://jmerd.org.my/download/3356/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jmerd.01.2019.116.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hodžić, Nihad & Kazagić, Anes & Smajević, Izet, 2016. "Influence of multiple air staging and reburning on NOx emissions during co-firing of low rank brown coal with woody biomass and natural gas," Applied Energy, Elsevier, vol. 168(C), pages 38-47.
    2. Bertrand, Vincent & Dequiedt, Benjamin & Le Cadre, Elodie, 2014. "Biomass for electricity in the EU-27: Potential demand, CO2 abatements and breakeven prices for co-firing," Energy Policy, Elsevier, vol. 73(C), pages 631-644.
    3. repec:dau:papers:123456789/14543 is not listed on IDEAS
    4. Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
    5. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    6. Verma, Munna & Loha, Chanchal & Sinha, Amar Nath & Chatterjee, Pradip Kumar, 2017. "Drying of biomass for utilising in co-firing with coal and its impact on environment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 732-741.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    2. Aviso, K.B. & Sy, C.L. & Tan, R.R. & Ubando, A.T., 2020. "Fuzzy optimization of carbon management networks based on direct and indirect biomass co-firing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    4. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    5. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    6. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    7. Kluska, Jacek & Turzyński, Tomasz & Ochnio, Mateusz & Kardaś, Dariusz, 2020. "Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets," Renewable Energy, Elsevier, vol. 149(C), pages 1246-1253.
    8. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Ouyang, Ziqu & Song, Wenhao & Li, Shiyuan & Liu, Jingzhang & Ding, Hongliang, 2020. "Experiment study on NOx emission characteristics of the ultra-low volatile fuel in a 2 MW novel pulverized fuel self-sustained preheating combustor," Energy, Elsevier, vol. 209(C).
    10. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    11. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    12. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    14. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
    15. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    17. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    18. Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.
    19. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    20. Jiang, Xuguang & Chen, Dandan & Ma, Zengyi & Yan, Jianhua, 2017. "Models for the combustion of single solid fuel particles in fluidized beds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 410-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zjmerd:v:42:y:2019:i:1:p:116-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://jmerd.org.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.