IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v3y2009p95-117.html
   My bibliography  Save this article

A method for selecting an effective investment project portfolio

Author

Listed:
  • Bogdan Rębiasz

Abstract

W artykule przedstawiono nową metodę wyboru efektywnych portfeli przedsięwzięć inwestycyjnych. Problem wyboru portfeli sformułowano w postaci zadania optymalizacji wielokryterialnej. Opracowany algorytm umożliwia poszukiwanie niezdominowanych portfeli przedsięwzięć inwestycyjnych. Kryteriami wyboru są: maksymalizacja wartości oczekiwanej NPV i minimalizacja semiodchylenia standardowego NPV portfela. Metoda umożliwia wybór portfeli przy uwzględnieniu zależności statystycznych i ekonomicznych pomiędzy przedsięwzięciami inwestycyjnymi. Jest ona dostosowana do przedsiębiorstw o wieloetapowym cyklu produkcji, na przykład przedsiębiorstwa przemysłu metalurgicznego czy chemicznego.

Suggested Citation

  • Bogdan Rębiasz, 2009. "A method for selecting an effective investment project portfolio," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(3), pages 95-117.
  • Handle: RePEc:wut:journl:v:3:y:2009:p:95-117
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/140%20-%20published.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James H. Lorie & Leonard J. Savage, 1955. "Three Problems in Rationing Capital," The Journal of Business, University of Chicago Press, vol. 28, pages 229-229.
    2. Jaszkiewicz, Andrzej, 2004. "On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study," European Journal of Operational Research, Elsevier, vol. 158(2), pages 418-433, October.
    3. Schwarz, H.-G., 2003. "Modelling investment and implementation of technological progress in metal industries. Theory and application to the German primary aluminium industry," Resources Policy, Elsevier, vol. 29(3-4), pages 99-109.
    4. Santhanam, Radhika & Kyparisis, George J., 1996. "A decision model for interdependent information system project selection," European Journal of Operational Research, Elsevier, vol. 89(2), pages 380-399, March.
    5. Lusztig, Peter & Schwab, Bernhard, 1968. "A Note on the Application of Linear Programming to Capital Budgeting," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 3(4), pages 427-431, December.
    6. Medaglia, Andres L. & Graves, Samuel B. & Ringuest, Jeffrey L., 2007. "A multiobjective evolutionary approach for linearly constrained project selection under uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 869-894, June.
    7. Mukherjee, Kampan & Bera, Achintya, 1995. "Application of goal programming in project selection decision -- A case study from the Indian coal mining industry," European Journal of Operational Research, Elsevier, vol. 82(1), pages 18-25, April.
    8. Bradley, Stephen P. & Frey, Sherwood C., 1978. "Equivalent Mathematical Programming Models of Pure Capital Rationing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(2), pages 345-361, June.
    9. Jaszkiewicz, Andrzej, 2002. "Genetic local search for multi-objective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 137(1), pages 50-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Bertonèche & Herwig Langohr, 1977. "Le choix des investissements en situation de rationnement du capital : comparaison des solutions fournies par différents modèles théoriques," Revue Économique, Programme National Persée, vol. 28(5), pages 730-764.
    2. Yael Grushka-Cockayne & Bert De Reyck & Zeger Degraeve, 2008. "An Integrated Decision-Making Approach for Improving European Air Traffic Management," Management Science, INFORMS, vol. 54(8), pages 1395-1409, August.
    3. Mavrotas, G. & Diakoulaki, D. & Caloghirou, Y., 2006. "Project prioritization under policy restrictions. A combination of MCDA with 0-1 programming," European Journal of Operational Research, Elsevier, vol. 171(1), pages 296-308, May.
    4. Pérez, Fátima & Gómez, Trinidad & Caballero, Rafael & Liern, Vicente, 2018. "Project portfolio selection and planning with fuzzy constraints," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 117-129.
    5. Ishibuchi, Hisao & Narukawa, Kaname & Tsukamoto, Noritaka & Nojima, Yusuke, 2008. "An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 188(1), pages 57-75, July.
    6. Mavrotas, George & Diakoulaki, Danae & Kourentzis, Athanasios, 2008. "Selection among ranked projects under segmentation, policy and logical constraints," European Journal of Operational Research, Elsevier, vol. 187(1), pages 177-192, May.
    7. Bogdan Rębiasz, 2010. "Interactive fuzzy numbers in the evaluation of the effectiveness of investment projects and selection of efficient portfolios," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 20(3-4), pages 103-127.
    8. Ye Tian & Miao Sun & Zuoliang Ye & Wei Yang, 2016. "Expanded models of the project portfolio selection problem with loss in divisibility," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(8), pages 1097-1107, August.
    9. Panos Xidonas & Haris Doukas & George Mavrotas & Olena Pechak, 2016. "Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model," Annals of Operations Research, Springer, vol. 247(2), pages 395-413, December.
    10. Helga Meier & Nicos Christofides & Gerry Salkin, 2001. "Capital Budgeting Under Uncertainty---An Integrated Approach Using Contingent Claims Analysis and Integer Programming," Operations Research, INFORMS, vol. 49(2), pages 196-206, April.
    11. Tobin, Roger L., 1999. "A fast interactive solution method for large capital expenditure selection problems," European Journal of Operational Research, Elsevier, vol. 116(1), pages 1-15, July.
    12. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    13. Schwarz, Hans-Gunter, 2006. "Economic materials-product chain models: Current status, further development and an illustrative example," Ecological Economics, Elsevier, vol. 58(2), pages 373-392, June.
    14. Tavana, Madjid & Khosrojerdi, Ghasem & Mina, Hassan & Rahman, Amirah, 2019. "A hybrid mathematical programming model for optimal project portfolio selection using fuzzy inference system and analytic hierarchy process," Evaluation and Program Planning, Elsevier, vol. 77(C).
    15. Bogdan Rębiasz, 2016. "New method of selecting efficient project portfolios in the presence of hybrid uncertainty," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(4), pages 65-90.
    16. S H Choi & S M Bae, 2009. "Strategic information systems selection with incomplete preferences: a case of a Korean electronics company," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 180-190, February.
    17. D. Babusiaux, 1988. "Financing investment and calculations of profitability [Financement des investissements et calculs de rentabilité]," Working Papers hal-01534450, HAL.
    18. Christian Meier & Dennis Kundisch & Jochen Willeke, 2017. "Is it Worth the Effort?," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(2), pages 81-95, April.
    19. Osborne, Michael J., 2010. "A resolution to the NPV-IRR debate?," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 234-239, May.
    20. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:3:y:2009:p:95-117. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.