IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v16y2013i03ns0219024913500118.html
   My bibliography  Save this article

Efficient Laplace Inversion, Wiener-Hopf Factorization And Pricing Lookbacks

Author

Listed:
  • SVETLANA BOYARCHENKO

    (Department of Economics, University of Texas at Austin, 1 University Station C3100, Austin, TX 78712–0301, USA)

  • SERGEI LEVENDORSKIĬ

    (Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom)

Abstract

We construct fast and accurate methods for (a) approximate Laplace inversion, (b) approximate calculation of the Wiener-Hopf factors for wide classes of Lévy processes with exponentially decaying Lévy densities, and (c) approximate pricing of lookback options. In all cases, we use appropriate conformal change-of-variable techniques, which allow us to apply the simplified trapezoid rule with a small number of terms (the changes of variables in the outer and inner integrals and in the formulas for the Wiener-Hopf factors must be compatible in a certain sense). The efficiency of the method stems from the properties of functions analytic in a strip (these properties were explicitly used in finance by Feng and Linetsky 2008). The same technique is applicable to the calculation of the pdfs of supremum and infimum processes, and to the calculation of the prices and sensitivities of options with lookback and barrier features.

Suggested Citation

  • Svetlana Boyarchenko & Sergei Levendorskiĭ, 2013. "Efficient Laplace Inversion, Wiener-Hopf Factorization And Pricing Lookbacks," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 1-40.
  • Handle: RePEc:wsi:ijtafx:v:16:y:2013:i:03:n:s0219024913500118
    DOI: 10.1142/S0219024913500118
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024913500118
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024913500118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Svetlana I Boyarchenko & Sergei Z Levendorskii, 2002. "Non-Gaussian Merton-Black-Scholes Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4955.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svetlana Boyarchenko & Sergei Levendorskiä¬ & J. Lars Kyrkby & Zhenyu Cui, 2021. "Sinh-Acceleration For B-Spline Projection With Option Pricing Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-50, December.
    2. Sergei Levendorskiĭ, 2017. "ULTRA-FAST PRICING BARRIER OPTIONS AND CDSs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-27, August.
    3. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2020. "Static and semistatic hedging as contrarian or conformist bets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 921-960, July.
    4. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient inverse $Z$-transform and pricing barrier and lookback options with discrete monitoring," Papers 2207.02858, arXiv.org, revised Jul 2022.
    5. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.
    6. Boyarchenko, Svetlana & Levendorskiĭ, Sergei, 2025. "Lévy models amenable to efficient calculations," Stochastic Processes and their Applications, Elsevier, vol. 186(C).
    7. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Alternative models for FX, arbitrage opportunities and efficient pricing of double barrier options in L\'evy models," Papers 2312.03915, arXiv.org.
    8. Weinan Zhang & Pingping Zeng, 2023. "A transform-based method for pricing Asian options under general two-dimensional models," Quantitative Finance, Taylor & Francis Journals, vol. 23(11), pages 1677-1697, November.
    9. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2025. "Efficient evaluation of expectations of functions of a Lévy process and its extremum," Finance and Stochastics, Springer, vol. 29(2), pages 443-468, April.
    10. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    11. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of double-barrier options and joint cpdf of a L\'evy process and its two extrema," Papers 2211.07765, arXiv.org.
    12. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    13. Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.
    14. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Efficient evaluation of joint pdf of a L\'evy process, its extremum, and hitting time of the extremum," Papers 2312.05222, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    2. Aase, Knut K, 2005. "The perpetual American put option for jump-diffusions with applications," University of California at Los Angeles, Anderson Graduate School of Management qt31g898nz, Anderson Graduate School of Management, UCLA.
    3. M. Montero, 2008. "Renewal equations for option pricing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(2), pages 295-306, September.
    4. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    5. Nina Boyarchenko & Sergei Levendorskiǐ, 2007. "On Errors And Bias Of Fourier Transform Methods In Quadratic Term Structure Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 273-306.
    6. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of expectations of functions of a stable L\'evy process and its extremum," Papers 2209.12349, arXiv.org.
    7. Svetlana Boyarchenko & Sergei Levendorski&icaron;, 2007. "Practical Guide To Real Options In Discrete Time," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 311-342, February.
    8. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    9. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    10. Alexander Novikov & Albert Shiryaev, 2004. "On an Effective Solution of the Optimal Stopping Problem for Random Walks," Research Paper Series 131, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    12. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    13. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    14. Mitya Boyarchenko & Marco De Innocentis & Sergei Levendorskiĭ, 2011. "Prices Of Barrier And First-Touch Digital Options In Lévy-Driven Models, Near Barrier," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(07), pages 1045-1090.
    15. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Simulation of a L\'evy process, its extremum, and hitting time of the extremum via characteristic functions," Papers 2312.03929, arXiv.org.
    16. Alexander Kushpel, 2014. "Pricing of basket options I," Papers 1401.1856, arXiv.org.
    17. Svetlana Boyarchenko & Sergei Levendorskii, 2004. "Real options and the universal bad news principle," Finance 0405011, University Library of Munich, Germany.
    18. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    19. Marc Jeannin & Martijn Pistorius, 2008. "A transform approach to compute prices and greeks of barrier options driven by a class of Levy processes," Papers 0812.3128, arXiv.org, revised Mar 2009.
    20. Sergei Levendorskiǐ, 2005. "Pseudodiffusions And Quadratic Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 393-424, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:16:y:2013:i:03:n:s0219024913500118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.