IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v07y2004i03ns0219024904002463.html
   My bibliography  Save this article

Pricing Of The American Put Under Lévy Processes

Author

Listed:
  • S. Z. Levendorskiǐ

    (Department of Economics, The University of Texas at Austin, 1 University Station C3100, Austin, TX 78712-0301, USA)

Abstract

We consider the American put with finite time horizonT, assuming that, under an EMM chosen by the market, the stock returns follow a regular Lévy process of exponential type. We formulate the free boundary value problem for the price of the American put, and develop the non-Gaussian analog of the method of lines and Carr's randomization method used in the Gaussian option pricing theory. The result is the (discretized) early exercise boundary and prices of the American put for all strikes and maturities from 0 toT. In the case of exponential jump-diffusion processes, a simple efficient pricing scheme is constructed. We show that for many classes of Lévy processes, the early exercise boundary is separated from the strike price by a non-vanishing margin on the interval[0, T), and that as the riskless rate vanishes, the optimal exercise price goes to zero uniformly over the interval[0, T), which is in the stark contrast with the Gaussian case.

Suggested Citation

  • S. Z. Levendorskiǐ, 2004. "Pricing Of The American Put Under Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 303-335.
  • Handle: RePEc:wsi:ijtafx:v:07:y:2004:i:03:n:s0219024904002463
    DOI: 10.1142/S0219024904002463
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024904002463
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024904002463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    2. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Normal Modified Stable Processes," Economics Series Working Papers 72, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svetlana Boyarchenko & Sergei Levendorskiä¬ & J. Lars Kyrkby & Zhenyu Cui, 2021. "Sinh-Acceleration For B-Spline Projection With Option Pricing Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-50, December.
    2. Kathrin Glau & Mirco Mahlstedt & Christian Potz, 2018. "A new approach for American option pricing: The Dynamic Chebyshev method," Papers 1806.05579, arXiv.org.
    3. Sergei Levendorskiĭ, 2017. "ULTRA-FAST PRICING BARRIER OPTIONS AND CDSs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-27, August.
    4. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2020. "Static and semistatic hedging as contrarian or conformist bets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 921-960, July.
    5. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient inverse $Z$-transform and pricing barrier and lookback options with discrete monitoring," Papers 2207.02858, arXiv.org, revised Jul 2022.
    6. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.
    7. Boyarchenko, Svetlana & Levendorskiĭ, Sergei, 2025. "Lévy models amenable to efficient calculations," Stochastic Processes and their Applications, Elsevier, vol. 186(C).
    8. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Alternative models for FX, arbitrage opportunities and efficient pricing of double barrier options in L\'evy models," Papers 2312.03915, arXiv.org.
    9. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2025. "Efficient evaluation of expectations of functions of a Lévy process and its extremum," Finance and Stochastics, Springer, vol. 29(2), pages 443-468, April.
    10. Anna Battauz & Marzia De Donno & Alessandro Sbuelz, 2015. "Real Options and American Derivatives: The Double Continuation Region," Management Science, INFORMS, vol. 61(5), pages 1094-1107, May.
    11. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, December.
    12. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of double-barrier options and joint cpdf of a L\'evy process and its two extrema," Papers 2211.07765, arXiv.org.
    13. Lee, Sangjun & Zhao, Jinhua, 2021. "Adaptation to climate change: Extreme events versus gradual changes," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    14. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    15. Matthias Schuster & Christian Vollmann & Volker Schulz, 2024. "Shape optimization for interface identification in nonlocal models," Computational Optimization and Applications, Springer, vol. 88(3), pages 963-997, July.
    16. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    17. Reshmi Biswas & Sweta Tiwari, 2023. "Regularity results for Choquard equations involving fractional p‐Laplacian," Mathematische Nachrichten, Wiley Blackwell, vol. 296(9), pages 4060-4085, September.
    18. Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.
    19. Shi, Chao, 2022. "Asymptotic Analysis of the Mixed-Exponential Jump Diffusion Model and Its Financial Applications," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    20. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    21. Hatem Ben-Ameur & Rim Chérif & Bruno Rémillard, 2016. "American-style options in jump-diffusion models: estimation and evaluation," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1313-1324, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    2. Rodríguez, Mª Araceli, 2005. "Nueva Evidencia Empírica sobre las Turbulencias Cambiarias de la Peseta Española. 1989-1998/New Evidence about Turbulences on the Spanish Peseta. 1989-1998s," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 23, pages 207-230, Abril.
    3. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    4. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    5. Young Shin Kim, 2018. "First Passage Time for Tempered Stable Process and Its Application to Perpetual American Option and Barrier Option Pricing," Papers 1801.09362, arXiv.org.
    6. Marc Potters & Rama Cont & Jean-Philippe Bouchaud, 1996. "Financial markets as adaptative systems," Science & Finance (CFM) working paper archive 500037, Science & Finance, Capital Fund Management.
    7. Andria, Joseph & di Tollo, Giacomo & Kalda, Jaan, 2022. "The predictive power of power-laws: An empirical time-arrow based investigation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Pablo Su'arez-Garc'ia & David G'omez-Ullate, 2012. "Scaling, stability and distribution of the high-frequency returns of the IBEX35 index," Papers 1208.0317, arXiv.org.
    9. Leal, Sandrine Jacob & Napoletano, Mauro, 2019. "Market stability vs. market resilience: Regulatory policies experiments in an agent-based model with low- and high-frequency trading," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 15-41.
    10. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    11. David Scott & Diethelm Würtz & Christine Dong & Thanh Tran, 2011. "Moments of the generalized hyperbolic distribution," Computational Statistics, Springer, vol. 26(3), pages 459-476, September.
    12. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    13. De Backer, Stijn & Rocha, Luis E.C. & Ryckebusch, Jan & Schoors, Koen, 2025. "On the potential of quantum walks for modeling financial return distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    14. Biondo, Alessio Emanuele & Mazzarino, Laura & Pluchino, Alessandro, 2024. "Trading strategies and Financial Performances: A simulation approach," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    15. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico, 2019. "The stylized facts of prediction markets: Analysis of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 159-170.
    16. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    17. Svetlana Boyarchenko, 2001. "Capital Accumulation under Non-Gaussian Processes and the Marshallian Law," Penn CARESS Working Papers 471ab9dee66c9aa1d3ef23dd9, Penn Economics Department.
    18. Erdinc Akyildirim & Shaen Corbet & Guzhan Gulay & Duc Khuong Nguyen & Ahmet Sensoy, 2019. "Order Flow Persistence in Equity Spot and Futures Markets: Evidence from a Dynamic Emerging Market," Working Papers 2019-011, Department of Research, Ipag Business School.
    19. Rama Cont & Jean-Philippe Bouchaud, 1997. "Herd behavior and aggregate fluctuations in financial markets," Science & Finance (CFM) working paper archive 500028, Science & Finance, Capital Fund Management.
    20. Ruggero Grilli & Gabriele Tedeschi & Mauro Gallegati, 2015. "Markets connectivity and financial contagion," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 287-304, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:07:y:2004:i:03:n:s0219024904002463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.